Tag Archives: asthma


Open cardiac massage in asthmatic arrests?

This idea was provoked by a colleague some years ago who could not achieve a palpable pulse during CPR of an arrested asthmatic child. He wondered whether the severe hyperinflation was rendering external cardiac compressions ineffective and whether he should have done a (prehospital) thoracotomy.

The literature is not strong. The 2010 AHA Guidelines rightly focus on reducing hyperinflation by disconnecting the tracheal tube from the ventilator circuit, and they mention ECMO for refractory cases, but there is no mention of open chest CPR.

I can only find two papers discussing it, both pretty old. A case series in the British Medical Journal from 1968 describes three patients with asthma who had asystolic arrests but did not achieve femoral pulses with external compressions(1). In two, open cardiac massage was performed resulting in restoration of sinus rhythm and cardiac output, and one appeared to make a neurological recovery.

A case report in 1987 describes a 32 year old man in asystolic cardiac arrest due to asthma(2):

“Ventilation required very high inflation pressures and little air movement was heard within the chest despite the administration of Adrenaline 1 mg and Aminophylline 250mg intravenously, and Adrenaline 1mg via the endotracheal tube. This was followed by an intravenous infusion of 100 ml of 8.4% Sodium Bicarbonate solution. External cardiac massage failed to produce a palpable pulse in the carotid area. The chest was, therefore, opened through a left anterolateral thoracotomy. The lungs appeared hyperinflated, bulky and tense and did not collapse when the pleural cavity was opened. The pericardium was opened and asystole confirmed, following eight to ten compressions of the heart some intrinsic activity commenced, ventilation also became much easier.”

He achieved ROSC and became haemodynamically stable but failed to wake up and treatment was withdrawn some days later.

Neither reports include mention of disconnection strategies to reduce hyperinflation. The lack of neurological recovery is not surprising given the apparent prolonged state of arrest the patients were resuscitated from. However there does appear to be a survivor who may not have made it had standard resuscitation (at the time) been continued.

Does this mean I would open the chest in an arrested asthma patient?
Not straight away, no. I would treat dynamic hyperinflation with tube disconnection and external compressions. I would correct absolute and relative hypovolaemia with crystalloid. I would treat bronchospasm (and possible anaphylaxis) with intravenous adrenaline/epinephrine. And I would exclude pneumothorax, possibly with ultrasound or more likely with bilateral open thoracostomies. If however these measures resulted in no detectable carotid flow with external cardiac compressions, ECMO was not available, and the arrest was not prolonged, I would definitely consider doing internal cardiac massage via thoracotomy.

What about you?

1. Grant IW, Kennedy WP, Malone DN
Deaths from asthma
Br Med J. 1968 May 18;2(5602):429–30

2. Diament RH, Sloan JP
Failed resuscitation in acute severe asthma: a medical indication for emergency thoracotomy?
Arch Emerg Med. 1987 Dec;4(4):233–5

Don’t bronchodilators work in infants?

Inpatient paediatric teams can be scornful when bronchodilators are given by ED staff to wheezing infants, correctly referring to the lack of evidence of clinical benefit(1). There is however a persisting meme out there I’ve heard on a number of occasions that ‘young infants don’t have the receptors so inhaled beta agonists will never work.’ I’d love to know where this comes from.

Apparently, beta 2-receptors are present from the 16th gestational week(2). Pulmonary function testing of ventilated, very-low-birth-weight babies has shown that some consistently responded to beta-agonists whereas others did not(3). A newly published study reports that a quarter of mechanically ventilated infants with bronchiolitis were responders to inhaled albuterol, defined as a reduction in respiratory system resistance more than 30% below baseline(4).

In summary: beta-agonist bronchodilators have not been shown to improve clinical outcomes in wheezing infants. However some infants with some wheezing disorders will show a response in terms of pulmonary function. The receptors are there, and in life-threatening presentations bronchodilators should certainly be considered.

1. Short acting beta agonists for recurrent wheeze in children under 2 years of age
Cochrane Database Syst Rev. 2002;(3):CD002873


BACKGROUND: Wheeze is a common symptom in infancy and is a common cause for both primary care consultations and hospital admission. Beta2-adrenoceptor agonists (b2-agonists) are the most frequently used as bronchodilator but their efficacy is questionable.
OBJECTIVES: To determine the effectiveness of b2-agonist for the treatment of infants with recurrent and persistent wheeze.
SEARCH STRATEGY: Relevant trials were identified using the Cochrane Airways Group database (CENTRAL), Medline and Pubmed. The database search used the following terms: Wheeze or asthma and Infant or Child and Short acting beta-agonist or Salbutamol (variants), Albuterol, Terbutaline (variants), Orciprenaline, Fenoterol

SELECTION CRITERIA: Randomised controlled trials comparing the effect of b2-agonist against placebo in children under 2 years of age who had had two or more previous episodes of wheeze, not related to another form of chronic lung disease.
DATA COLLECTION AND ANALYSIS: Eight studies met the criteria for inclusion in this meta-analysis. The studies investigated patients in three settings: at home (3 studies), in hospital (2 studies) and in the pulmonary function laboratory (3 studies). The main outcome measure was change in respiratory rate except for community based studies where symptom scores were used.

MAIN RESULTS: The studies were markedly heterogeneous and between study comparisons were limited. Improvement in respiratory rate, symptom score and oxygen saturation were noted in one study in the emergency department following two salbutamol nebulisers but this had no impact on hospital admission. There was a reduction in bronchial reactivity following salbutamol. There was no significant benefit from taking regular inhaled salbutamol on symptom scores recorded at home.

REVIEWER’S CONCLUSIONS: There is no clear benefit of using b2-agonists in the management of recurrent wheeze in the first two years of life although there is conflicting evidence. At present, further studies should only be performed if the patient group can be clearly defined and there is a suitable outcome parameter capable of measuring a response.

2. The beta-2-agonists in asthma in infants and young children
Arch Pediatr. 2002 Aug;9 Suppl 3:384s-389s


Beta 2-agonists, by inducing a fast and long relaxation of the bronchial smooth muscle, are considered as the more potent bronchodilators. beta 2-receptors are present from the 16th gestational week, explaining a possible bronchial response in the youngest children. beta 2-agonists do not induce any bronchodilator response in healthy children. Short-acting beta 2-agonists (salbutamol or albuterol, terbutaline) are indicated for asthma attacks, as needed in chronic asthma, and for prevention of symptoms during effort. They are safe and secure. The more efficient route of administration in preschool children is pressurized metered-dose inhaler used with a spacer device. Therefore, whatever the route of inhalation chosen (inhalation, injection, or continuous nebulization in acute asthma attack), more specified indications and doses are needed in young children. Long-acting beta 2-agonists (formoterol, salmeterol) are not authorized in France in children under 4 to 5 years of age depending on the drug used. Because of new oral formulations and recent considerations about their use in asthma attack, instead of short-acting beta 2-agonists, their indication in preschool asthmatic children might be reconsidered.

3. Use of a beta-agonist in ventilated, very-low-birth-weight babies: a longitudinal evaluation
Dev Pharmacol Ther. 1990;15(2):61-7


To determine if there is a specific postnatal (PNA) or postconceptional age (PCA) at which ventilated preterm infants respond to beta-agonists, we evaluated 15 infants with a mean gestational age of 26.5 +/- 1.5 weeks and mean birth weight of 0.89 +/- 0.23 kg who required mechanical ventilation at 10 days of age. Weekly pulmonary function testing (PFT) was performed before and 1 h after administration of albuterol. Taking the group as a whole, as well as individual babies, regression analysis showed no relationship between positive response and either PNA or PCA. Evaluation of individual infants, however, showed that some consistently responded to beta-agonists whereas others did not. We recommend individual PFT to identify those infants who will benefit from use of beta-agonists.

4. Pulmonary mechanics following albuterol therapy in mechanically ventilated infants with bronchiolitis
J Asthma. 2012 Sep;49(7):688-96


BACKGROUND AND AIMS: Bronchiolitis is a common cause of critical illness in infants. Inhaled β(2)-agonist bronchodilators are frequently used as part of treatment, despite unproven effectiveness. The purpose of this study was to describe the physiologic response to these medications in infants intubated and mechanically ventilated for bronchiolitis.

MATERIALS AND METHODS: We conducted a prospective trial of albuterol treatment in infants intubated and mechanically ventilated for bronchiolitis. Before and for 30 minutes following inhaled albuterol treatment, sequential assessments of pulmonary mechanics were determined using the interrupter technique on repeated consecutive breaths.

RESULTS: Fifty-four infants were enrolled. The median age was 44 days (25-75%; interquartile range (IQR) 29-74 days), mean hospital length of stay (LOS) was 18.3 ± 13.3 days, mean ICU LOS was 11.3 ± 6.4 days, and mean duration of mechanical ventilation was 8.5 ± 3.5 days. Fifty percent (n = 27) of the infants were male, 81% (n = 44) had public insurance, 80% (n = 41) were Caucasian, and 39% (n = 21) were Hispanic. Fourteen of the 54 (26%) had reduction in respiratory system resistance (Rrs) that was more than 30% below baseline, and were defined as responders to albuterol. Response to albuterol was not associated with demographic factors or hospitalization outcomes such as LOS or duration of mechanical ventilation. However, increased Rrs, prematurity, and non-Hispanic ethnicity were associated with increased LOS.

CONCLUSIONS: In this population of mechanically ventilated infants with bronchiolitis, relatively few had a reduction in pulmonary resistance in response to inhaled albuterol therapy. This response was not associated with improvements in outcomes.

2011 Asthma Guidelines

The British Thoracic Society / SIGN Guidelines on asthma have been updated for 2011. There don’t seem to be any modificiations to the sections on acute severe asthma which were updated in 2009 and blogged here, although the treatment algorithms seem to be presented in a slightly different format and therefore are reproduced here:

Management of acute severe asthma in adults in hospital

Management of acute asthma in children in hospital

Oxygen therapy for asthma can elevate CO2

Patients with acute exacerbations of asthma randomised to receive high concentration oxygen therapy showed a greater rise in CO2 than those who received titrated oxygen to keep SpO2 > 93%.
This study has a few weaknesses but raises an interesting challenge to the dogma of high flow oxygen (and oxygen driven nebulisers) for all acute asthma exacerbations.

The suggested main mechanism for the elevation in CO2 is worsening ventilation/perfusion mismatching as a result of the release of hypoxic pulmonary vasoconstriction and a consequent increase in physiological dead space. The authors remind us that this has been demonstrated in other studies on asthma and acute COPD exacerbations. The authors infer that high concentration oxygen therapy may therefore potentially increase the PaCO2 across a range of respiratory conditions with abnormal gas exchange due to ventilation/perfusion mismatching

Some of the weaknesses include lack of blinding, recruiting fewer patients than planned, and changing their primary outcome variable after commencing the study (which the authors are honest about) from absolute CO2 to increase in CO2 (since it was apparent on preliminary analysis of the first few patients that presenting CO2 was the primary determinant of subsequent CO2). Furthermore, the CO2 was measured from a transcutaneous device as opposed to the true ‘gold standard’ of arterial blood gas analysis, although good reasons are given for this.

Despite some of these drawbacks this study provides us with a further reminder that oxygen is a drug with some unwanted effects and therefore its dose needs to be individualised for the patient.



Background The effect on Paco(2) of high concentration oxygen therapy when administered to patients with severe exacerbations of asthma is uncertain.


Methods 106 patients with severe exacerbations of asthma presenting to the Emergency Department were randomised to high concentration oxygen (8 l/min via medium concentration mask) or titrated oxygen (to achieve oxygen saturations between 93% and 95%) for 60 min. Patients with chronic obstructive pulmonary disease or disorders associated with hypercapnic respiratory failure were excluded. The transcutaneous partial pressure of carbon dioxide (Ptco(2)) was measured at 0, 20, 40 and 60 min. The primary outcome variable was the proportion of patients with a rise in Ptco(2) ≥4 mm Hg at 60 min.


Results The proportion of patients with a rise in Ptco(2) ≥4 mm Hg at 60 min was significantly higher in the high concentration oxygen group, 22/50 (44%) vs 10/53 (19%), RR 2.3 (95% CI 1.2 to 4.4, p<0.006). The high concentration group had a higher proportion of patients with a rise in Ptco(2) ≥8 mm Hg, 11/50 (22%) vs 3/53 (6%), RR 3.9 (95% CI 1.2 to 13.1, p=0.016). All 10 patients with a final Ptco(2) ≥45 mm Hg received high concentration oxygen therapy, and in five there was an increase in Ptco(2) ≥10 mm Hg.


Conclusion High concentration oxygen therapy causes a clinically significant increase in Ptco(2) in patients presenting with severe exacerbations of asthma. A titrated oxygen regime is recommended in the treatment of severe asthma, in which oxygen is administered only to patients with hypoxaemia, in a dose that relieves hypoxaemia without causing hyperoxaemia.


Randomised controlled trial of high concentration versus titrated oxygen therapy in severe exacerbations of asthma
Thorax. 2011 Nov;66(11):937-41

LRAs for acute asthma?

As far as I’m concerned the jury is still out here since this small study was terminated early, more patients in the montelukast group received magnesium and / or aminophylline, and it is unclear how the groups compared with regard to other other acute therapies such as beta-agonists and steroids.

BACKGROUND: Although leukotriene receptor antagonists have an established role in the management of patients with chronic asthma, their efficacy in an acute asthma exacerbation is not fully known.
METHODS: 87 adults with acute asthma requiring hospitalisation were randomly assigned to receive either montelukast 10 mg or placebo on admission and every evening thereafter for 4 weeks (when they were reviewed as outpatients). All patients were admitted under the care of a consultant chest physician and received full care for acute asthma according to the British Thoracic Society guidelines. The primary end point was the difference in peak expiratory flow (PEF) between active and placebo treatment the morning following admission.
RESULTS: Primary end point data were analysed for 73 patients. At study entry, patients who received montelukast (n=37) had a mean (±SD) PEF of 227.6 (±56.9) l/min (47.6% predicted) and those who received placebo (n=36) had a PEF of 240.3 (±99.8) l/min (49.6% predicted). The morning after admission, patients who received montelukast achieved a PEF of 389.6 (±109.7) l/min (81.4% predicted) compared with 332.3 (±124.9) l/min (69.8% predicted) for placebo (p=0.046). The mean difference between treatment groups was 57.4 l/min (95% CI of 1.15 to 113.6 l/min or 1.95-21.2% predicted).
CONCLUSION: In acute asthma exacerbations the additional administration of oral montelukast results in a significantly higher PEF the morning after admission than that achievable with current standard treatment.

Oral montelukast in acute asthma exacerbations: a randomised, double-blind, placebo-controlled trial
Thorax. 2011 Jan;66(1):7-11

Magnesium in asthma limits tachycardia

Dr WFS Sellers and colleagues describe several cases that demonstrate convincingly a protective effect of intravenous magnesium sulphate against the tachycardia produced by intravenous salbutamol in patients with asthma. This effect was observed both when magnesium was given before and when given after the salbutamol. It was seen in critically ill asthmatic patients and in a volunteer with well-controlled asthma.

Intravenous magnesium sulphate increases atrial contraction time and refractory times. It is used to treat atrial tachyarrhythmias and has a negative chronotropic and dromotropic effect.

Intravenous magnesium sulphate prevents intravenous salbutamol tachycardia in asthma
Br J Anaesth. 2010 Dec;105(6):869-70