Tag Archives: difficult airway

Difficult Airway? What Kind Exactly?

crazed-nutter-sm
Mention the term ‘difficult airway’ and many of us will conjure mental images of some kind of distorted anatomy. However, airway management may be ‘difficult’ for a number of reasons, and no internationally agreed definition of the term exists. Given the wrong staff and circumstances, an ‘easy’ airway in your or my hands may indeed become very difficult. In their editorial “The myth of the difficult airway: airway management revisited” (1) Huitink & Bouwman state:

“In our opinion, the ‘difficult airway’ does not exist. It is a complex situational interplay of patient, practitioner, equipment, expertise and circumstances.”

Airways that are anatomically difficult (eg. limited mouth opening, short thyromental distance, large tongue, neck immobility, etc.) and physiologically difficult (hypoxaemia, hypotension, acidosis) are well described among FOAM resources (2-4). In addition to these, a third category of difficulty is well worth considering.

At the smaccDUB conference, intensivist and human factors legend Peter Brindley described three types of difficult airway:

  1. Anatomically difficult
  2. Physiologically difficult
  3. Situationally difficult
    brindleysm
    Brindley = Legend

This last category probably surfaces more commonly than realised, particularly outside the operating room.

Imagine attending a cardiac arrest call on a medical ward. The patient is a 70 year old 120 kg male. The nurses have flattened the bed and discarded the pillow to optimise supine position for CPR. Gobs of vomitus splash from the patient’s pharynx with each compression. The wall suction system is disconnected. There is no bougie in the crash cart’s airway drawer. The nearest capnograph is on another floor of the hospital. In this scenario, no matter how excellent the critical care practitioner’s airway skills, this is a damned difficult airway.

I think Brindley’s third category is a term that should catch on, as a way of helping analyse cases that progress suboptimally and to identify factors during pre-intubation checks that can be addressed. It is terminology that I have added to my own Resuscitese Lexicon, particularly for case discussions during morbidity & mortality and airway audit meetings.

I would like to hear the ‘Situationally Difficult Airway‘ become more widely used, as it fills a gap in how we describe this important area of resuscitation practice.

 

 

1. Huitink JM, Bouwman RA. The myth of the difficult airway: airway management revisited. Anaesthesia. 2015 Mar;70(3):244–9. (Full text)

2. LITFL: Airway Assessment

3. EMCrit: HOP Killers

4. PulmCCM: The Physiologically Difficult Airway

Difficult airways can't be reliably predicted

This paper1 proves what Rich Levitan has been saying (and writing) for years – that there is no method of prediction of difficult intubation that is both highly sensitive (the test wouldn’t miss many difficult airways) and highly specific (meaning those predicted to be difficult would indeed turn out to be difficult). Most importantly, this means one should always have a plan for failure to intubate and failure to mask-ventilate regardless of how ‘easy’ the airway may appear.
This study of a large prospectively collected database captured anaesthetists’ clinical assessment of likelihood of difficult intubation and difficult mask-ventilation, and compared them with actual findings. These studies are always difficult, due in part to the lack of standard definitions of difficult airways, but the take home was clear – the large majority of difficulties were unanticipated and not suspected from pre-operative clinical assessment.
This issue was brilliantly summed up by Yentis in a 2002 Editorial2:
I dare to suggest that attempting to predict difficult intubation is unlikely to be useful – does that mean one shouldn’t do it at all? To this I say no, for there is another important benefit of this ritual: it forces the anaesthetist at least to think about the airway, and for this reason we should encourage our trainees (and ourselves) to continue doing it.”
1. Diagnostic accuracy of anaesthesiologists’ prediction of difficult airway management in daily clinical practice: a cohort study of 188 064 patients registered in the Danish Anaesthesia Database
Anaesthesia. 2014 Dec 16. doi: 10.1111/anae.12955. [Epub ahead of print]
[EXPAND Abstract]

Both the American Society of Anesthesiologists and the UK NAP4 project recommend that an unspecified pre-operative airway assessment be made. However, the choice of assessment is ultimately at the discretion of the individual anaesthesiologist. We retrieved a cohort of 188 064 cases from the Danish Anaesthesia Database, and investigated the diagnostic accuracy of the anaesthesiologists’ predictions of difficult tracheal intubation and difficult mask ventilation. Of 3391 difficult intubations, 3154 (93%) were unanticipated. When difficult intubation was anticipated, 229 of 929 (25%) had an actual difficult intubation. Likewise, difficult mask ventilation was unanticipated in 808 of 857 (94%) cases, and when anticipated (218 cases), difficult mask ventilation actually occurred in 49 (22%) cases. We present a previously unpublished estimate of the accuracy of anaesthesiologists’ prediction of airway management difficulties in daily routine practice. Prediction of airway difficulties remains a challenging task, and our results underline the importance of being constantly prepared for unexpected difficulties.

[/EXPAND]
2. Predicting difficult intubation–worthwhile exercise or pointless ritual?
Anaesthesia. 2002 Feb;57(2):105-9

Awake intubation

I had some fun today getting intubated.
We used the Ambu aScope 2 and the Greater Sydney Area HEMS equipment and approach to airway management. I didn’t receive an antisialogogue or any analgesia or sedation.
The big learning point for me was how hard it was to anaesthetise the posterior part of my nasal cavity and nasopharynx. I thought the worst part would be any stimulation of my vocal cords or trachea with lidocaine or instrumentation, but this really was fine. Nebulised 2% lidocaine (the strongest concentration we have), atomised lidocaine (using a mucosal atomiser), and co-phenylcaine spray weren’t sufficient. I can see why people use pastes or gel to maintain mucosal contact while the lidocaine takes effect, but we don’t have those (yet). The best solution came from hooking up oxygen tubing to an iv cannula via a three way tap. Oxygen was run through at 2 l/min and lidocaine injected via the the three way tap. This enabled an atomised spray to be directed right onto the area concerned, and made the insertion of the nasotracheal tube more tolerable – although still unpleasant.
crazed-nutter-sm
The fact I could be intubated awake with reasonable topicalisation suggests most patients should tolerate it perhaps after even an analgesic dose of ketamine, eg. 30-40 mg in an adult. I suspect full dissocation would not be required, which is good for cooperation (“stick your tongue out sir”). I appreciate there are better agents, such as remifentanil or dexmedetomidine, but my area of interest is the retrieval setting – where I have neither the luxury of using these agents nor that of calling for anaesthetic back up.
Thanks to HEMS physicians Emily Stimson, Nirosha De Zoysa, Felicity Day, Chloe Tetlow, and Fergal McCourt for making it fun and safe.
Here’s the video:

Twitter has been helpful in gathering some advice, particularly from @DocJohnHinds:

Updated Difficult Airway Guidelines

diffairwayThe American Society of Anesthesiologists has published an update to its Practice Guidelines for Management of the Difficult Airway. You can get the full PDF for free. I’m linking to it for interest, but do not expect to find anything groundbreaking for the management of critical patients.
Practice Guidelines for Management of the Difficult Airway: An Updated Report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway
Anesthesiology 2013;118:251-70

Reassurance: difficult laryngoscopy in children remains rare

I was taught a useful principle by a paediatric anaesthetist 10 years ago which has proven true in my experience and has contributed to keeping me calm when intubating sick kids. Unlike adults, in whom difficulty in intubation can often be unexpected, the vast majority of normal looking children are easy to intubate, and the ones who are difficult usually have obvious indicators such as dysmorphism.
This appears to be supported by recent evidence: in a large retrospective series of 11.219 anaesthesia patients, the overall incidence of difficult laryngoscopy [Cormack and Lehane (CML) grade III and IV] was only 1.35%, although was much higher in infants less than one year compared with older children. This low percentage is in the same ball park as two other paediatric studies. Besides younger age, their database suggested underweight, ASA III and IV physical status and, if obtainable, Mallampati III and IV findings as predictors for difficult laryngoscopy. The authors point out:

…the oromaxillofacial surgery department with a high proportion of cleft palate interventions and pediatric cardiac surgery contributed substantially to the total number of difficult laryngoscopies. In patients undergoing pediatric cardiac surgery, a possible explanation for the higher incidence of CML III/IV findings might be that some congenital heart defects are associated with chromosomal anomalies like microdeletion 22q11.2 syndrome. This syndrome is also associated with extracardiac anomalies like cranio-facial dysmorphism

Take home message: As a very rough rule of thumb to illustrate the difference between the ease/difficulty of laryngoscopy between adults and kids, I think it’s fair to say grade III or IV views occur in about 10% of adults but only about 1% of children.

Incidence and predictors of difficult laryngoscopy in 11.219 pediatric anesthesia procedures
Paediatr Anaesth. 2012 Aug;22(8):729-36
[EXPAND Click for abstract]


OBJECTIVE: Difficult laryngoscopy in pediatric patients undergoing anesthesia.

AIM: This retrospective analysis was conducted to investigate incidence and predictors of difficult laryngoscopy in a large cohort of pediatric patients receiving general anesthesia with endotracheal intubation.

BACKGROUND: Young age and craniofacial dysmorphy are predictors for the difficult pediatric airway and difficult laryngoscopy. For difficult laryngoscopy, other general predictors are not yet described.

METHODS: Retrospectively, from a 5-year period, data from 11.219 general anesthesia procedures in pediatric patients with endotracheal intubation using age-adapted Macintosh blades in a single center (university hospital) were analyzed statistically.

RESULTS: The overall incidence of difficult laryngoscopy [Cormack and Lehane (CML) grade III and IV] was 1.35%. In patients younger than 1 year, the incidence of CML III or IV was significantly higher than in the older patients (4.7% vs 0.7%). ASA Physical Status III and IV, a higher Mallampati Score (III and IV) and a low BMI were all associated (P < 0.05) with difficult laryngoscopy. Patients undergoing oromaxillofacial surgery and cardiac surgery showed a significantly higher rate of CML III/IV findings.

CONCLUSION: The general incidence of difficult laryngoscopy in pediatric anesthesia is lower than in adults. Our results show that the risk of difficult laryngoscopy is much higher in patients below 1 year of age, in underweight patients and in ASA III and IV patients. The underlying disease might also contribute to the risk. If the Mallampati score could be obtained, prediction of difficult laryngoscopy seems to be reliable. Our data support the existing recommendations for a specialized anesthesiological team to provide safe anesthesia for infants and neonates.

[/EXPAND]

From BURP to BILP: backwards internal laryngeal pressure

A burns patient whose tracheal tube was accidentally dislodged and ended up placed in the oesophagus on day 2 of his ICU stay continued to spontaneously ventilate and maintain saturations on a midazolam infusion. The oesophageal tube was left in during laryngoscopy (after propofol but no muscle relaxant due to anticipated difficult airway) which revealed a cormack-lehane grade 3 view. The operator’s hand which was holding a bougie rested on the oesophageal tube, which displaced it backwards. This resulted in backwards displacement of the larynx and improved the glottic view to 2b, facilitating intubation.
The discovery of this ‘backwards internal laryngeal pressure’ manoeuvre led the authors to make the recommendation that during difficult intubation an inadvertently placed oesophageal tube should be left in place to allow a BILP manouevre, but removed if it impedes the passage of the tracheal tube.
I love anything that might improve success rates of critical procedures and this one could conceivably come in handy. I can just see Minh Le Cong inventing a transoesophageal posterior laryngal retractor for under 50 bucks…
The use of “Internal Laryngeal Pressure” to improve the laryngeal view following inadvertent oesophageal intubation in a patient with difficult airway
Anaesth Intensive Care. 2012 Jul;40(4):736-7

Awake video laryngoscopy

A nice study reminds of us the option of awake video laryngoscopy as an alternative to fibreoptic instrumentation of the airway. The study was done on healthy volunteers so we have no idea of the applicability to the patient group we would be interested in using this on – those with an anticipated difficult airway sufficiently stable to allow tolerance and preparation for this procedure. The videolaryngoscopy was performed with patients upright in a face-to-face position, with the laryngoscope inserted in the inverted handle-down (“tomahawk”) position (this is the way I remove fishbones using a direct laryngoscope and Magill’s forceps).
Visualization was faster with video laryngoscopy, and grade of view was similar in both groups. Cormack Lehane grading was used to assess view, whereas the POGO score (percentage of glottic opening) might have provided a better means of assessing which view is superior. The study did not evaluate endotracheal tube insertion.
Local anaesthesia was provided with 5 ml nebulised 4% lidocaine and weight-based doses of 4% lidocaine were then sprayed into the nose and oropharynx through a mucosal atomisation device to a maximum of 9 mg/kg. Oxymetazoline was applied nasally for the flexible fibreoptic laryngoscopy.


Study objectives: We compare laryngoscopic quality and time to highest-grade view between a face-to-face approach with the GlideScope and traditional flexible fiber-optic laryngoscopy in awake, upright volunteers.

Methods: This was a prospective, randomized, crossover study in which we performed awake laryngoscopy under local anesthesia on 23 healthy volunteers, using both a GlideScope video laryngoscopy face-to-face technique with the blade held upside down and flexible fiber-optic laryngoscopy. Operator reports of Cormack-Lehane laryngoscopic views and video-reviewed time to highest-grade view, as well as number of attempts, were recorded.

Results: Ten women and 13 men participated. A grade II or better view was obtained with GlideScope video laryngoscopy in 22 of 23 (95.6%) participants and in 23 of 23 (100%) participants with flexible fiber-optic laryngoscopy (relative risk GlideScope video laryngoscopy versus flexible fiber-optic laryngoscopy 0.96; 95% confidence interval 0.88 to 1.04). Median time to highest-grade view for GlideScope video laryngoscopy was 16 seconds (interquartile range 9 to 34) versus 51 seconds (interquartile range 35 to 96) for flexible fiber-optic laryngoscopy. A distribution of interindividual differences demonstrated that GlideScope video laryngoscopy was, on average, 39 seconds faster than flexible fiber-optic laryngoscopy (95% confidence interval 0.2 to 76.9 seconds).

Conclusion: GlideScope video laryngoscopy can be used to obtain a Cormack-Lehane grade II or better view in the majority of awake, healthy volunteers when an upright face-to-face approach is used and was slightly faster than traditional flexible fiber-optic laryngoscopy. However, flexible fiber-optic laryngoscopy may be more reliable
at obtaining high-grade views of the larynx. Awake, face-to-face GlideScope use may offer an alternative approach to the difficulty airway, particularly among providers uncomfortable with flexible fiber-optic laryngoscopy.

GlideScope Versus Flexible Fiber Optic for Awake Upright Laryngoscopy
Ann Emerg Med. 2012 Mar;59(3):159-64

Make space for pre-hospital intubation

Control your environment – don’t let it control you” is a reliable adage for pre-hospital providers, and its adherence can assist in in-hospital resuscitation too. Commanding control of ones space is a skill demonstrated by more seasoned paramedics compared with novices and the requirement, where possible, for 360 degrees of access around a patient is included in some Standard Operating Procedures for pre-hospital rapid sequence intubation.

Brett Rosen MD controlling space in the field

Evidence for this approach is now further supported by a study demonstrating that limited surrounding space on scene was a significant risk factor for difficult pre-hospital intubation by European EMS physicians.
Other predisposing factors for difficult prehospital intubation included obesity and a short neck.


OBJECTIVES:For experienced personnel endotracheal intubation (ETI) is the gold standard to secure the airway in prehospital emergency medicine. Nevertheless, substantial procedural difficulties have been reported with a significant potential to compromise patients’ outcomes. Systematic evaluation of ETI in paramedic operated emergency medical systems (EMS) and in a mixed physician/anaesthetic nurse EMS showed divergent results. In our study we systematically assessed factors associated with difficult ETI in an EMS exclusively operating with physicians.

METHODS:Over a 1-year period we prospectively collected data on the specific conditions of all ETIs of two physician staffed EMS vehicles. Difficult ETI was defined by more than 3 attempts or a difficult visualisation of the larynx (Cormack and Lehane grade 3, or worse). For each patient ETI conditions, biophysical characteristics and factors of the surrounding scene were assessed. Additionally, physicians were asked whether they had expected difficult ETI in advance.

RESULTS:Out of 3979 treated patients 305 (7.7%) received ETI. For 276 patients complete data sets were available. The incidence of difficult ETI was 13.0%. In 4 cases (1.4%) ETI was impossible, but no patient was unable to be ventilated sufficiently. Predicting conditions for difficult intubation were limited surrounding space on scene (p<0.01), short neck (p<0.01), obesity (p<0.01), face and neck injuries (p<0.01), mouth opening<3cm (p<0.01) and known ankylosing spondylitis (p<0.01). ETI on the floor or with C-spine immobilisation in situ were of no significant influence. The incidence of unexpected difficult ETI was 5.0%.
CONCLUSIONS: In a physician staffed EMS difficult prehospital ETI occurred in 13% of cases. Predisposing factors were limited surrounding space on scene and certain biophysical conditions of the patient (short neck, obesity, face and neck injuries, and anatomical restrictions). Unexpected difficult ETI occurred in 5% of the cases.

Difficult prehospital endotracheal intubation – predisposing factors in a physician based EMS
Resuscitation. 2011 Dec;82(12):1519-24

Saving Lives Through Failure

Think about what you would do if faced with the following situation:

You sedate and paralyse a patient with severe injuries in order to intubate them. You are unable to intubate due to a poor view and massive orofacial haemorrhage. An iGel provides temporary oxygenation while you prepare for a surgical airway.

Your first surgical airway attempt fails due to insertion of the bougie through a false (too superficial) passage. You spot your mistake and re-do the procedure successfully with a deeper incision. The patient’s airway is secure and there is good oxygenation and ventilation.

You discover that a colleague has videoed the procedure on his iPhone. However he only captured the first, unsuccessful attempt. The patient is not identifiable in the close up video. It’s late at night and only he and you know of the existence of the video. He asks you what you want him to do with it.



Do you…
(a) Ask your colleague to delete the video?
(b) Watch the video with him and look for learning points, and then delete it?
(c) Ask him for a copy of it and request that he doesn’t show it to anyone else?
(d) Other course of action
Consider your course of action given this situation, and then click below to reveal what my colleague did recently in exactly the same scenario…
[EXPAND What did he do?]
(d) He did something else entirely: he got a copy of the video, burned it onto a CD, and left it on his boss’s desk!

It takes a certain kind of practitioner to risk embarrassment and criticism in the pursuit of the greater educational good.

He had already ascertained what he would need to do differently next time, so had nothing personal to gain from his chosen action.

Instead, he believed that sharing the video would help prevent his colleagues from repeating the same mistake, and help his supervisors review their cricothyroidotomy training in order to better prepare their team for the procedure. Ultimately, this gesture was directed towards the good of our patients.

His actions may have saved more than one life that evening.

[/EXPAND]

RSI complications increase with intubation difficulty


A substudy of a large randomised controlled trial comparing etomidate with ketamine for RSI in the pre-hospital environment, emergency department, and intensive care unit examined immediate complication rates in relation to the intubation difficulty scale score (IDS).
They used the 7-criteria IDS previously developed and evaluated. The variables included in the IDS are as follows:

  1. the number of attempts excluding the first;
  2. the number of extra operators;
  3. the number of additional techniques utilised;
  4. the Cormack grade (0–3 points, grade 1 giving no IDS points);
  5. the intensity of lifting force required (0 points if normal, 1 point if increased);
  6. the need to apply external laryngeal pressure (0 or 1 point, application of cricoid pressure (Sellick manoeuvre) does not alter the score)
  7. vocal cord position (abduction, 0 points; adduction, 1 point). Each criterion was scored and recorded by the physician who performed the procedure.

The sum gives the IDS score, and a score of 0 indicates an easy tracheal intubation at the first attempt by a single operator using a single technique, with a good view of the glottis and abducted vocal cords. Intubation was considered difficult if the score was greater than 5.
There was a positive linear relationship between IDS score and complication rate, and difficult intubation appeared to be a significant independent predictor of death.

OBJECTIVES: To evaluate the association between emergency tracheal intubation difficulty and the occurrence of immediate complications and mortality, when standardised airway management is performed by emergency physicians.

METHODS: The present study was a substudy of the KETAmine SEDation (KETASED) trial, which compared morbidity and mortality after randomisation to one of two techniques for rapid sequence intubation in an emergency setting. Intubation difficulty was measured using the intubation difficulty scale (IDS) score. Complications recognised within 5min of endotracheal intubation were recorded. We used multivariate logistic regression analysis to determine the factors associated with the occurrence of complications. Finally, a Cox proportional hazards regression model was used to examine the association of difficult intubation with survival until 28 days.

RESULTS: A total of 650 patients were included, with mean age of 55±19 years. Difficult intubation (IDS >5) was recorded in 73 (11%) patients and a total of 248 complications occurred in 192 patients (30%). Patients with at least one complication had a significantly higher median IDS score than those without any complications. The occurrence of a complication was independently associated with intubation difficulty (odds ratio 5.9; 95% confidence interval (CI) [3.5;10.1], p<0.0001) after adjustment on other significant factors. There was a positive linear relationship between IDS score and complication rate (R(2)=0.83; p<0.001). The Cox model for 28-day mortality indicated that difficult intubation (hazard ratio 1.59; 95%CI [1.04;2.42], p=0.03) was a significant independent predictor of death.

CONCLUSION: Difficult intubation, measured by the IDS score, is associated with increased morbidity and mortality in patients managed under emergent conditions.

Morbidity related to emergency endotracheal intubation—A substudy of the KETAmine SEDation trial
Resuscitation. 2011 May;82(5):517-22