Tag Archives: ECMO


ECLS on Japanese, in Japanese

A review of extracorporeal life support for out-of-hospital cardiac arrest was undertaken, looking specifically at studies published in the Japanese literature. The abstract is shown below. Based on these findings, inclusion criteria for a multicentre, prospective non-randomised cohort study were established. The ‘SAVE-J: Study of advanced life support for ventricular fibrillation with extracorporeal circulation in Japan’ was launched and has been ongoing since October 2008 to compare the proportion of patients with a favourable neurological outcome by intention-to-treat in an ECPR group with a non-ECPR group. Inclusion criteria for this new study are:

  1. shockable rhythm on the initial ECG
  2. cardiac arrest on arrival at hospital regardless of the presence of recovery of spontaneous circulation before arrival
  3. arrival at hospital within 45 min of the call for an ambulance or cardiac arrest;
  4. cardiac arrest remaining for more than 15 min after arrival at hospital.

I look forward to seeing the results SAVE-J. If you wish to read more, you can check out the SAVE-J study website.

AIM: Although favourable outcomes in patients receiving extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest have been frequently reported in Japanese journals since the late 1980s, there has been no meta-analysis of ECPR in Japan. This study reviewed and analysed all previous studies in Japan to clarify the survival rate of patients receiving ECPR.

MATERIAL AND METHODS: Case reports, case series and abstracts of scientific meetings of ECPR for out-of-hospital cardiac arrest written in Japanese between 1983 and 2008 were collected. The characteristics and outcomes of patients were investigated, and the influence of publication bias of the case-series studies was examined by the funnel-plot method.

RESULTS: There were 1282 out-of-hospital cardiac arrest patients, who received ECPR in 105 reports during the period. The survival rate at discharge given for 516 cases was 26.7±1.4%. The funnel plot presented the relationship between the number of cases of each report and the survival rate at discharge as the reverse-funnel type that centred on the average survival rate. In-depth review of 139 cases found that the rates of good recovery, mild disability, severe disability, vegetative state, death at hospital discharge and non-recorded in all cases were 48.2%, 2.9%, 2.2%, 2.9%, 37.4% and 6.4%, respectively.

CONCLUSIONS: Based on the results of previous reports with low publication bias in Japan, ECPR appears to provide a higher survival rate with excellent neurological outcome in patients with out-of-hospital cardiac arrest.

Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: a review of the Japanese literature
Resuscitation. 2011 Jan;82(1):10-4

Extracorporeal CPR

Extracorporeal cardiopulmonary resuscitation (E-CPR) using extracorporeal membrane oxygenation (ECMO) support during inhospital cardiac arrest has been attempted to improve the outcome of cardiopulmonary resuscitation (CPR). A retrospective, single-center, observational study from Korea analysed a total of 406 adult patients with witnessed inhospital cardiac arrest receiving cardiopulmonary resuscitation for >10 mins.

How their system works: An ECMO cart was transported to the CPR site within 5–10 mins during the day and within 10–20 mins during the night shift. The decision to use E-CPR was dependent on the CPR team leader. Application of ECMO was usually considered under conditions of prolonged arrest (when there was no ROSC after 10–20 mins of CPR), recurrent arrest (when ROSC could not be maintained), or when the patient could not be expected to recover as a result of underlying severe left ventricular dysfunction or coronary artery disease despite a short CPR duration (end-stage heart failure requiring transplantation, left main coronary artery occlusion, etc)

The primary end point was a survival discharge with minimal neurologic impairment.

No. ECMO. I said ECMO.

85 patients underwent E-CPR and 321 underwent C- CPR. ECMO implantation was successful in 94.1% (80 of 85) in the E-CPR group, except for three cannulation failures and two ECMO flow failures. There was a signficantly greater proportion of patients with primary cardiac disease in the E-CPR group. Propensity score matching was used to balance the baseline characteristics and cardiopulmonary resuscitation variables that could potentially affect prognosis. In the matched population (n = 120), the survival discharge rate with minimal neurologic impairment in the extracorporeal cardiopulmonary resuscitation group was significantly higher than that in the conventional cardiopulmonary resuscitation group (odds ratio of mortality or significant neurologic deficit, 0.17; 95% confidence interval, 0.04-0.68; p = .012). In addition, there was a significant difference in the 6-month survival rates with minimal neurologic impairment (hazard ratio, 0.48; 95% confidence interval, 0.29-0.77; p = .003; p <.001 by stratified log-rank test). In the subgroup based on cardiac origin, extracorporeal cardiopulmonary resuscitation also showed benefits for survival discharge (odds ratio, 0.19; 95% confidence interval, 0.04-0.82; p = .026) and 6-month survival with minimal neurologic impairment (hazard ratio, 0.56; 95% confidence interval, 0.33-0.97; p = .038; p = .013 by stratified log-rank test).

The authors conclude that extracorporeal cardiopulmonary resuscitation showed a survival benefit over conventional cardiopulmonary resuscitation in patients who received cardiopulmonary resuscitation for >10 mins after witnessed inhospital arrest, especially in cases of cardiac origin. These results contrast with these recently published French findings in patients receiving ECMO after out-of-hospital cardiac arrest.

Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: A comparison with conventional cardiopulmonary resuscitation
Crit Care Med. 2011 Jan;39(1):1-7