Tag Archives: etomidate

Etomidate – there is always a downside

By Norwegian intensivist/anaesthetist/HEMS Physician Dr Per Bredmose.

[Warning – Rant level: Viking]

Etomidate has for a long time been known in some countries as the “drug of choice” for RSI in unstable/fragile patients. This is due to the fact that induction with etomidate is fairly cardiovascularly stable. However, there is a down side: a subsequent suppression of adrenal function. This was initially discovered after etomidate was used for sedation infusions on ICU.

It has for a long time been debated whether this is a side effect with clinical implications after a single dose induction… and yes it has.

A recent Japanese study demonstrates this(1). This is a large propensity based study. Now, propensity based statistics are pretty complex to explain. In short, it is an advanced method to strengthen the statistics when comparing groups in non-cross over studies.

In this study 2616 patients receiving etomidate for induction and a volatile agent for maintenance are included.
This showed an increased OR for 30-days mortality with a factor of 2.5 and 1.5 times greater chance for a major cardiovascular event in hospital. Interestingly enough, there were no significant differences in either perioperative vasopressor use or infections complications during hospital stay.

What does this mean?
In my mind and experience, it strengthens the fact that there is no wonder drug. And also that there seems to be a reason for why etomidate is de-registered in many countries.
Also, it tells me that for a safe prehospital RSI we need physicians capable of clinical judgment and “decision making” to tailor an (any) induction agent to the specific individual patient. In my mind, there is no room for an etomidate-only (dose / weight) induction protocol!

1. Komatsu R, You J, Mascha EJ, Sessler DI, Kasuya Y, Turan A.
Anesthetic induction with etomidate, rather than propofol, is associated with increased 30-day mortality and cardiovascular morbidity after noncardiac surgery.
Anesth Analg. 2013 Dec;117(6):1329-37

Ketamine & cardiovascular stability

I ‘jumped ship’ from etomidate to ketamine for rapid sequence intubation (RSI) in sick patients about seven years ago. Good thing too, since I later moved to Australia where we don’t have etomidate. I’ve been one of the aggressive influences behind my prehospital service’s switch to ketamine as the standard induction agent for prehospital RSI. It’s no secret that I think propofol has no place in RSI in the critically ill.

I love ketamine for its haemodynamic stability compared with other induction agents. In fact, I very rarely see a drop in blood pressure when I use it for RSI even in significantly shocked patients. One should however try to remain open to evidence that disconfirms ones biases, lest we allow science to be replaced by religion. I therefore was interested to read a report of two cases of cardiac arrest following the administration of ketamine for rapid sequence intubation (RSI)(1).


The first case was a 25 year old with septic shock due to an intestinal perforation, with a respiratory rate of 30 ‘labored’ breaths per minute and hypoxaemia prior to intubation with 2mg/kg ketamine who became bradycardic and then had a 10-15 minute PEA arrest after ketamine administration (but prior to intubation). Pre-arrest oxygen saturation and pre-induction blood gases are not reported.

The second case was an 11 year old with septic shock and pneumonia, hypoxaemia, and a severe metabolic acidosis. She arrested with bradycardia then a brief period of asystole one minute after receiving 2.4 mg/kg ketamine with rocuronium for intubation.

Was the ketamine responsible for the arrests? Ketamine usually exhibits a stimulatory effect on the cardiovascular system, through effects which are incompletely understood but include a centrally mediated sympathetic response and probable inhibition of norepinephrine (noradrenaline) reuptake. However ketamine can have a direct depressant effect on cardiac output which is usually overridden by the sympathetic stimulation. In critically ill severely stressed patients the depressant effect may predominate. In a study on 12 critically ill surgical patients, haemodynamic indices were measured using pulmonary artery catheters within 5 minutes of ketamine administration (at a mean of 70 mg)(2). Six patients demonstrated decreases in ventricular contractility, and four had decreases in cardiac output. Mean arterial blood pressure decreased in four patients. The authors commented:

The patients..were septic, hypovolemic, or cirrhotic, and had severe stress preoperatively. It is possible that in these ill patients adrenocortical and catechol stores had been depleted prior to ketamine administration. Alternatively, in the setting of prolonged preoperative stress, there may be resistance to further sympathetic and/or adrenocotical stimulation by ketamine. In either case, preoperative stress may blunt the usual physiologic responses to ketamine, setting the stage for possible adverse effects.

The negative cardiovascular effects of ketamine may also be precipitated by larger doses or repeated doses of ketamine(3).

While this small case series of cardiac arrest following ketamine administration is interesting, we should bear in mind the other possible precipitants of arrest in these patients, which are not all discussed by the authors:

i) Both patients were hypoxaemic prior to induction and their peri-intubation oxygen saturations are not reported. Arrests following bradycardia at the time of induction in the critically ill are frequently related to hypoxaemia.

ii) The second patient had a severe metabolic acidosis and the first – an abdominal sepsis patient with a labored respiratory rate of 30 – very probably did too. A failure to match a patient’s compensatory respiratory alkalosis with hyperventilation after anaesthesia is known to precipitate arrest in acidaemic patients.

iii) Finally, if the ketamine was responsible for the arrests, one should consider that the doses given to these shocked and highly unstable patients were well in excess of what many of us would recommend, and doses in the range of 0.5-1 mg/kg might not have been associated with adverse effects.

The takehome points for me are that this report is a helpful reminder that the cardiovascular stimulation-inhibition balance of ketamine may be altered by severe critical illness, and that doses of any induction agent should be significantly reduced in the critically ill patient. In no way does this convince me that I should discard ketamine as my preferred choice for RSI in such patients.

1. Cardiac Arrest Following Ketamine Administration for Rapid Sequence Intubation
J Intensive Care Med. 2012 May 29. [Epub ahead of print]

Given their relative hemodynamic stability, ketamine and etomidate are commonly chosen anesthetic agents for sedation during the endotracheal intubation of critically ill patients. As the use of etomidate has come into question particularly in patients with sepsis, due to its effect of adrenal suppression, there has been a shift in practice with more reliance on ketamine. However, as ketamine relies on a secondary sympathomimetic effect for its cardiovascular stability, cardiovascular and hemodynamic compromise may occur in patients who are catecholamine depleted. We present 2 critically ill patients who experienced cardiac arrest following the administration of ketamine for rapid sequence intubation (RSI). The literature regarding the use of etomidate and ketamine for RSI in critically ill patients is reviewed and options for sedation during endotracheal intubation in this population are discussed.

2. Cardiovascular effects of anesthetic induction with ketamine
Anesth Analg. 1980 May;59(5):355-8

Anesthetic induction with ketamine has been reported to maintain or improve cardiovascular performance in severely ill patients. Using invasive cardiovascular monitoring, we studied physiologic responses to a single dose of ketamine in 12 critically ill patients. Six patient demonstrated decreases in ventricular contractility, and four had decreases in cardiac output. Mean arterial blood pressure decreased in four patients. Pulmonary venous admixture increased in four of six patients, while oxygen consumption decreased in eight of 11 patients. Thus, a single dose of ketamine produced decreases in cardiac and pulmonary performance and in peripheral oxygen transport in this group of patients. It is proposed that in severely ill patients, preoperative stress may alter the usual physiologic responses to ketamine administration, and adverse effects may predominate. Ketamine, therefore, should be used with caution for induction of anesthesia in critically ill and in acutely traumatized patients until additional studies and further information on cardiovascular responses to ketamine are available.

3. A comparison of some cardiorespiratory effects of althesin and ketamine when used for induction of anaesthesia in patients with cardiac disease
Br J Anaesth. 1976 Nov;48(11):1071-81

Cardiorespiratory effects of ketamine and Althesin were measured in two groups of premedicated patients with cardiac disease. The drugs were given in clinically equivalent doses with a second dose administered about 10 min after induction. The first dose of ketamine caused a marked increase in systemic and pulmonary arterial pressure, heart rate, and central venous and wedge pressures and cardiac index. The first dose of Althesin caused a decrease in systemic arterial pressure, central venous pressure, cardiac index and heart work, but little change in heart rate. The second dose of induction agent was administered before the cardiorespiratory effects of the initial dose had resolved. The second dose of Althesin caused changes similar to those following the first dose, but less marked. The changes following the second dose of ketamine were opposite to those following the first dose.

Etomidate & sepsis

A meta-analysis attempts to quantify etomidate’s effect on mortality and adrenal suppression. Of course, we all know a meta-analysis can only be as reliable as the original data it’s analysing. I think editorialists Lauzier and Turgeon have a point with their statement:

“Given the widespread use of etomidate in the emergency room, we believe that a RCT designed to evaluate the safety of etomidate as a hypnotic agent for endotracheal intubation of patients with sepsis is not only ethical but also urgently warranted”

For a critique of the paper and subsequent discussion, check out the Academic Life in EM blog post by Brian Hayes

OBJECTIVE: To evaluate the effects of single-dose etomidate on the adrenal axis and mortality in patients with severe sepsis and septic shock.

DESIGN: A systematic review of randomized controlled trials and observational studies with meta-analysis.

SETTING: Literature search of EMBASE, Medline, Cochrane Database, and Evidence-Based Medical Reviews.

SUBJECTS: Sepsis patients who received etomidate for rapid sequence intubation.


MEASUREMENTS AND MAIN RESULTS: We conducted a systematic review of randomized controlled trials and observational studies with meta-analysis assessing the effects of etomidate on adrenal insufficiency and all-cause mortality published between January 1950 and February 2012. We only examined studies including septic patients. All-cause mortality served as our primary end point, whereas the prevalence of adrenal insufficiency was our secondary end point. Adrenal insufficiency was determined using a cosyntropin stimulation test in all studies. We used a random effects model for analysis; heterogeneity was assessed with the I statistic. Publication bias was evaluated with Begg’s test. Five studies were identified that assessed mortality in those who received etomidate. A total of 865 subjects were included. Subjects who received etomidate were more likely to die (pooled relative risk 1.20; 95% confidence interval 1.02-1.42; Q statistic, 4.20; I2 statistic, 4.9%). Seven studies addressed the development of adrenal suppression associated with the administration of etomidate; 1,303 subjects were included. Etomidate administration increased the likelihood of developing adrenal insufficiency (pooled relative risk 1.33; 95% confidence interval 1.22-1.46; Q statistic, 10.7; I2 statistic, 43.9%).

CONCLUSIONS: Administration of etomidate for rapid sequence intubation is associated with higher rates of adrenal insufficiency and mortality in patients with sepsis.

Etomidate is associated with mortality and adrenal insufficiency in sepsis: A meta-analysis Crit Care Med. 2012 Nov;40(11):2945-53

Steroid replacement after etomidate: no benefit

More fuel for the etomidate debate…

In essence:

  • Etomidate has been a useful induction agent for RSI for many years due to its greater haemodynamic stability compared with thiopentone or propofol
  • It is widely used in the USA
  • It inhibits the 11β-hydroxylase enzyme that converts 11β-deoxycortisol into cortisol in the adrenal gland
  • A single dose of etomidate has been demonstrated to inhibit cortisol production for up to 48 hrs
  • This has led to concerns about its use in the critically ill, particular in patients with severe sepsis / septic shock
  • This small study randomised patients receiving etomidate to hydrocortisone or placebo, with no significant difference in these patient-oriented outcomes: duration of mechanical ventilation, intensive care unit length of stay, or 28-day mortality
  • This study suggests that replacement doses of hydrocortisone are not required after a single dose of etomidate
  • No randomised study has conclusively demonstrated increased mortality due to etomidate; however while controversy and the possibility of harm remain, I personally see no reason not to use ketamine for RSI in haemodynamically compromised patients.
  • Ketamine was compared with etomidate in a previous controlled trial

OBJECTIVE: To investigate the effects of moderate-dose hydrocortisone on hemodynamic status in critically ill patients throughout the period of etomidate-related adrenal insufficiency.

DESIGN: Randomized, controlled, double-blind trial (NCT00862381).

SETTING: University hospital emergency department and three intensive care units.

INTERVENTIONS: After single-dose etomidate (H0) for facilitating endotracheal intubation, patients without septic shock were randomly allocated at H6 to receive a 42-hr continuous infusion of either hydrocortisone at 200 mg/day (HC group; n = 49) or saline serum (control group; n = 50).

MEASUREMENTS AND MAIN RESULTS: After completion of a corticotrophin stimulation test, serum cortisol and 11β-deoxycortisol concentrations were subsequently assayed at H6, H12, H24, and H48. Forty-eight patients were analyzed in the HC group and 49 patients in the control group. Before treatment, the diagnostic criteria for etomidate-related adrenal insufficiency were fulfilled in 41 of 45 (91%) and 38 of 45 (84%) patients in the HC and control groups, respectively. The proportion of patients with a cardiovascular Sequential Organ Failure Assessment score of 3 or 4 declined comparably over time in both HC and control groups: 65% vs. 67% at H6, 65% vs. 69% at H12, 44% vs. 54% at H24, and 34% vs. 45% at H48, respectively. Required doses of norepinephrine decreased at a significantly higher rate in the HC group compared with the control group in patients treated with norepinephrine at H6. No intergroup differences were found regarding the duration of mechanical ventilation, intensive care unit length of stay, or 28-day mortality.

CONCLUSION: These findings suggest that critically ill patients without septic shock do not benefit from moderate-dose hydrocortisone administered to overcome etomidate-related adrenal insufficiency.

Corticosteroid after etomidate in critically ill patients: A randomized controlled trial
Crit Care Med. 2012 Jan;40(1):29-35

Etomidate vs midazolam in sepsis

Given that single-dose etomidate can cause measurable adrenal suppression, its use in patients with sepsis is controversial. A prospective, double-blind, randomised study of patients with suspected sepsis who were intubated in the ED randomised patients to receive either etomidate or midazolam before intubation. The primary outcome measure was hospital length of stay, and no difference was demonstrated. The study was not powered to detect a mortality difference.

This study is interesting as a provider of fuel for the ‘etomidate debate’, but still irrelevant to those of us who have abandoned etomidate in favour of ketamine as an induction agent for haemodynamically unstable patients. Personally I remain unconvinced of the existence of patients who can’t be safely intubated using the limited choice of thiopentone or ketamine.

A Comparison of the Effects of Etomidate and Midazolam on Hospital Length of Stay in Patients With Suspected Sepsis: A Prospective, Randomized Study
Annals Emergency Medicine 2010;56(5):481-9

Etomidate in RSI – systematic review

A systematic review of 20 included studies comparing a bolus dose of etomidate for rapid sequence induction with other induction agents resulted in the following conclusion:

“The available evidence suggests that etomidate suppresses adrenal function transiently without demonstrating a significant effect on mortality. However, no studies to date have been powered to detect a difference in hospital, ventilator, or ICU length of stay or in mortality”

The Effect of a Bolus Dose of Etomidate on Cortisol Levels, Mortality, and Health Services Utilization: A Systematic Review
Ann Emerg Med. 2010 Aug;56(2):105-13

Bad news for etomidate from CORTICUS

In an a priori substudy of the CORTICUS multi-centre, randomised, double-blind, placebo-controlled trial of hydrocortisone in septic shock, the use and timing of etomidate administration was examined in relation to outcome.

Of 499 analysable patients, 96 (19.2%) received etomidate within the 72 h prior to inclusion. The proportion of non-responders to ACTH was significantly higher in patients who were given etomidate than in other patients (61.0 vs. 44.6%, P = 0.004). Etomidate therapy was associated with a higher 28-day mortality in univariate analysis (P = 0.02) and after correction for severity of illness (42.7 vs. 30.5%; P=0.06 and P=0.03) in two multi-variant models. Hydrocortisone administration did not change the mortality of patients receiving etomidate (45 vs. 40%).

Some of the previous attacks on etomidate have not been founded on the most rigorous evidence. However this study adds further to the difficulty in justifying etomidate’s use when a perfectly acceptable alternative (ketamine) exists for rapid sequence induction in the haemodynamically unstable septic patient.

The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock.
Intensive Care Med. 2009 Nov;35(11):1868-76