Tag Archives: HEMS

Better TBI outcome with HEMS

A retrospective study from Italy compared outcomes of head injured patients cared for by a ground ambulance service (GROUND) with those managed by a HEMS team that included an experienced pre-hospital anaesthetist. Interestingly 73% of the ground group were also attended by a physician, but one ‘with only basic life-support capabilities and no formal training in airways management’. Despite these limited skills a results table shows that 36% of the GROUND group were intubated on scene (compared with 92% of the HEMS group), although without the use of neuromuscular blockers.

The HEMS group consisted of 89 patients and the GROUND group of 105 patients. There were no statistical differences in age, ISS, aISShead, or GCS, although arterial hypotension at arrival at the ER was present in 18% of HEMS patients and in 36% of GROUND patients (P < 0.001).
The overall mortality rate was lower in the HEMS than in the GROUND group (21 vs. 25% , P < 0.05). The survival with or without only minor neurological disabilities was higher in the HEMS than in the GROUND group (54 vs. 44% respectively, P < 0.05); among the survivors, the rate of severe neurological disabilities was lower in the HEMS than in the GROUND group (25 vs. 31%, P < 0.05). The out-of-hospital phase duration was longer in the HEMS group but this group had a faster time to definitive care (neurosurgery or neurocritical care).
Influence of prehospital treatment on the outcome of patients with severe blunt traumatic brain injury: a single-centre study
Eur J Emerg Med. 2009 Dec;16(6):312-7

Pre-hospital thoracotomy and aortic clamping in blunt trauma

This is one of those ‘wow they really do that!?‘ papers…Patients undergoing thoracotomy and aortic clamping for pre-hospital blunt traumatic arrest either in the field or in the ED were evaluated for the outcome of survival to ICU admission. None of the 81 patients who underwent this intervention survived to discharge.
Field thoracotomy resulted in shorter times from arrival of the emergency medical team to performance of the thoracotomy (19.2 vs 30.7 mins). Patients who arrested in front of the team had a greater ICU admission rate than those who were already in cardiac arrest when the team arrived (70% vs 8%).
One may argue against an intervention that seems to have resulted in no benefit to the patient. However a counterargument might be that an ICU admission allows for better end-of-life management for grieving families, and for the possibility of organ donation.
Interestingly, there were some neurologically intact survivors of emergency thoracotomy for blunt trauma by this service, although they were excluded from the study for either (i) receiving the field thoracotomy before full arrest or (ii) arresting after arrival in the ED.
Role of resuscitative emergency field thoracotomy in the Japanese helicopter emergency medical service system
Resuscitation. 2009 Nov;80(11):1270-4

HEMS paramedic intubation success

All medical out of hospital cardiac arrests attended by the Warwickshire and Northamptonshire Air Ambulance (WNAA) over a 64-month period were reviewed. There were no significant differences in self-reported intubation failure rate, morbidity or clinical outcome between doctor-led and paramedic-led cases. The authors conclude that experienced paramedics regularly operating with physicians have a low tracheal intubation failure rate at out of hospital cardiac arrests, whether practicing independently or as part of a doctor-led team, and that this is likely due to increased and regular clinical exposure.
Can experienced paramedics perform tracheal intubation at cardiac arrests? Five years experience of a regional air ambulance service in the UK
Resuscitation. 2009 Dec;80(12):1342-5

Thoracostomy in blunt traumatic arrest

37 patients with blunt traumatic cardiac arrest underwent attempted resuscitation by a HEMS crew over a four year period. Chest decompression was performed in 18 cases (17 thoracostomy, one needle decompression). The procedure revealed evidence of chest injury in 10 cases (pneumothorax, haemothorax, massive air leak) and resulted in return of circulation and survival to hospital in four cases. All four cases died of associated major head injury, although one became a heart beating organ donor. Only half of the cases found to have pneumothorax demonstrated clinical signs of one prior to chest decompression.
The authors state: ‘Relying on clinical signs of the thorax alone will not identify all patients with these injuries, and our data support extending the practice into all patients with a suitable mechanism of injury together with external evidence of chest injury.’
Chest decompression during the resuscitation of patients in prehospital traumatic cardiac arrest
Emerg Med J. 2009 Oct;26(10):738-40

Prehospital airway equipment on UK HEMS

Prehospital airway management on rescue helicopters in the United Kingdom
26 of 27 identified UK rescue helicopter bases responded to a questionnaire sent by German anaesthesiologists on the airway equipment they carried. The take home message is that there were some important gaps: not all carried equipment for establishing a surgical airway and not all had a means of capnometry. Pull your socks up guys the Germans are watching.
Anaesthesia. 2009 Jun;64(6):625-31
http://www.ncbi.nlm.nih.gov/pubmed/19453316

Air medical intubation success

In contrast to literature showing high intubation failure rates by ground paramedics, a review over eight years of 369 intubations by flight paramedics and nurses showed successful tracheal intubation in 92.1% cases. Of the 369 intubation encounters, rapid sequence medications were given in 345. The authors ascribe their success to both initial training and mandatory ongoing practice and demonstration of competencies.
Performance of endotracheal intubation and rescue techniques by emergency services personnel in an air medical service
Prehosp Emerg Care. 2009 Jan-Mar;13(1):44-9

BIS+HEMS

Bispectral index monitoring (BIS) was applied to 57 intubated patients transported by a Helcopter Emergency Medical Service (HEMS), demonstrating (1) that the patients were adequately sedated, (2) BIS works in helicopters, and (3) there is enormous scope for publishing work related to the retrieval environment – anything is of interest!
Bispectral index monitoring in helicopter emergency medical services patients
Prehosp Emerg Care. 2009 Apr-Jun;13(2):193-7

Physician/paramedic vs paramedic HEMS

Two English HEMS services covering the same geographical area, one physican / paramedic crewed and one double paramedic crewed, were compared. There were no differences in scene times. As well as predictably providing more rapid sequence induction, nerve blocks, and ketamine use, the physician-paramedic team discharged more people at scene and were more likely to cease resuscitation attempts in GCS 3 patients.
Influence of air ambulance doctors on on-scene times, clinical interventions, decision-making and independent paramedic practice.
Emerg Med J. 2009 Feb;26(2):128-34

Queensland HEMS intubations

Careflight Queensland report a 9 month series of intubations by their doctor-paramedic HEMS teams who performed 39 intubations (and assisted hospital doctors in an additonal 4), of which less than half were pre-hospital. There was one failed intubation, successfully ventilated with a laryngeal mask airway.
Emergency intubation: a prospective multicentre descriptive audit in an Australian helicopter emergency medical service.
Emerg Med J. 2009 Jan;26(1):65-9