Tag Archives: neurology


Bilateral fixed dilated pupils? Operate if extradural!

Almost two-thirds of patients with extradural haematoma and bilateral fixed dilated pupils survived after surgery, with over half having a good outcome

 

pupilsiconNeurosurgeon, HEMS doctor, and all round good egg Mark Wilson was on the RAGE podcast recently and mentioned favourable outcomes from neurosurgery in patients with extradural (=epidural) haematomas who present with bilateral fixed dilated pupils (BFDP). Here’s his paper that gives the figures – a systematic review and meta-analysis.

A total of 82 patients with BFDP who underwent surgical evacuation of either subdural or extradural haematoma were identified from five studies – 57 with subdural (SDH) and 25 with extradural haematomas (EDH).

In patients with EDH and BFDP mortality was 29.7% (95% CI 14.7% to 47.2%) and 54.3% had a favourable outcome (95% CI 36.3% to 71.8%).

Only 6.6% of patients with SDH and BFDP had a good functional outcome.

Clearly there is potential for selection bias and publication bias, but these data certainly suggest an aggressive surgical approach is appropriate in some patients with BFDP.

The authors comment on the pessimism that accompanies these cases, which potentially denies patients opportunities for recovery:


“We believe that 54% of patients with extradural haematoma with BFDPs having a good outcome is an underappreciated prognosis, and the perceived poor prognosis of BFDPs (from all causes) has influenced decision making deeming surgery inappropriately futile in some cases.”


Scotter J, Hendrickson S, Marcus HJ, Wilson MH.
Prognosis of patients with bilateral fixed dilated pupils secondary to traumatic extradural or subdural haematoma who undergo surgery: a systematic review and meta-analysis.
Emerg Med J 2014 e-pub ahead of print Nov 11;:1–7


Primary objective To review the prognosis of patients with bilateral fixed and dilated pupils secondary to traumatic extradural (epidural) or subdural haematoma who undergo surgery.

Methods A systematic review and meta-analysis was performed using random effects models. The Cochrane Central Register of Controlled Trials and PubMed databases were searched to identify relevant publications. Eligible studies were publications that featured patients with bilateral fixed and dilated pupils who underwent surgical evacuation of traumatic extra-axial haematoma, and reported on the rate of favourable outcome (Glasgow Outcome Score 4 or 5).

Results Five cohort studies met the inclusion criteria, collectively reporting the outcome of 82 patients. In patients with extradural haematoma, the mortality rate was 29.7% (95% CI 14.7% to 47.2%) with a favourable outcome seen in 54.3% (95% CI 36.3% to 71.8%). In patients with acute subdural haematoma, the mortality rate was 66.4% (95% CI 50.5% to 81.9%) with a favourable outcome seen in 6.6% (95% CI 1.8% to 14.1%).

Conclusions and implications of key findings Despite the poor overall prognosis of patients with closed head injury and bilateral fixed and dilated pupils, our findings suggest that a good recovery is possible if an aggressive surgical approach is taken in selected cases, particularly those with extradural haematoma.

Lowering the BP rapidly in ICH

ICH-iconIn our retrieval service case reviews, one thing that is that sure to generate discussion is what to do about the blood pressure in patients who present with intracranial haemorrhage and hypertension. We don’t want the bleeding to be worsened by higher blood pressure, but we don’t want to decrease cerebral perfusion pressure in patients who have raised intracranial pressure. Consensus guidelines exist for spontaneous intracerebral haemorrhage and subarachnoid haemorrhage, but they’re not based on strong data.

Here’s a study that attempted to provide more information. Intensive lowering to a target systolic of 140 mmHg within 1 hour was compared with lowering to a target of 180 mmHg. There was no significant reduction in the rate of the primary outcome of death or severe disability. The skeptic in me is disappointed there was no placebo arm. An ordinal analysis of modified Rankin scores favoured the intensive BP-lowering intervention, which means this study can be used by both those for and against intensive BP lowering to support their views.

As explained in an accompanying editorial, a number of factors may limit generalisability to Western practice, such as the predominant use of the alpha-blocking agent urapadil in the large numbers of Asian patients, a drug not available in the United States. Future publication of the ATACH-II trial using intravenous nicardipine will shed more light on this topic.

1. Rapid Blood-Pressure Lowering in Patients with Acute Intracerebral Hemorrhage
N Engl J Med. 2013 Jun 20;368(25):2355-65


BACKGROUND: Whether rapid lowering of elevated blood pressure would improve the outcome in patients with intracerebral hemorrhage is not known.

METHODS: We randomly assigned 2839 patients who had had a spontaneous intracerebral hemorrhage within the previous 6 hours and who had elevated systolic blood pressure to receive intensive treatment to lower their blood pressure (with a target systolic level of <140 mm Hg within 1 hour) or guideline-recommended treatment (with a target systolic level of <180 mm Hg) with the use of agents of the physician’s choosing. The primary outcome was death or major disability, which was defined as a score of 3 to 6 on the modified Rankin scale (in which a score of 0 indicates no symptoms, a score of 5 indicates severe disability, and a score of 6 indicates death) at 90 days. A prespecified ordinal analysis of the modified Rankin score was also performed. The rate of serious adverse events was compared between the two groups.

RESULTS: Among the 2794 participants for whom the primary outcome could be determined, 719 of 1382 participants (52.0%) receiving intensive treatment, as compared with 785 of 1412 (55.6%) receiving guideline-recommended treatment, had a primary outcome event (odds ratio with intensive treatment, 0.87; 95% confidence interval [CI], 0.75 to 1.01; P=0.06). The ordinal analysis showed significantly lower modified Rankin scores with intensive treatment (odds ratio for greater disability, 0.87; 95% CI, 0.77 to 1.00; P=0.04). Mortality was 11.9% in the group receiving intensive treatment and 12.0% in the group receiving guideline-recommended treatment. Nonfatal serious adverse events occurred in 23.3% and 23.6% of the patients in the two groups, respectively.

CONCLUSIONS: In patients with intracerebral hemorrhage, intensive lowering of blood pressure did not result in a significant reduction in the rate of the primary outcome of death or severe disability. An ordinal analysis of modified Rankin scores indicated improved functional outcomes with intensive lowering of blood pressure.

2. Blood pressure in intracerebral hemorrhage–how low should we go?
N Engl J Med. 2013 Jun 20;368(25):2426-7

Clopidogrel and aspirin for TIA

A large Chinese trial compared aspirin alone with combination aspirin / clopidogrel in patients who had had a TIA in the previous 24 hours. 90-day stroke outcome was reduced in the combination therapy group without an apparent increase in haemorrhage.

Clopidogrel with Aspirin in Acute Minor Stroke or Transient Ischemic Attack
N Engl J Med. 2013 Jul 4;369(1):11-19


Background Stroke is common during the first few weeks after a transient ischemic attack (TIA) or minor ischemic stroke. Combination therapy with clopidogrel and aspirin may provide greater protection against subsequent stroke than aspirin alone.

Methods In a randomized, double-blind, placebo-controlled trial conducted at 114 centers in China, we randomly assigned 5170 patients within 24 hours after the onset of minor ischemic stroke or high-risk TIA to combination therapy with clopidogrel and aspirin (clopidogrel at an initial dose of 300 mg, followed by 75 mg per day for 90 days, plus aspirin at a dose of 75 mg per day for the first 21 days) or to placebo plus aspirin (75 mg per day for 90 days). All participants received open-label aspirin at a clinician-determined dose of 75 to 300 mg on day 1. The primary outcome was stroke (ischemic or hemorrhagic) during 90 days of follow-up in an intention-to-treat analysis. Treatment differences were assessed with the use of a Cox proportional-hazards model, with study center as a random effect.

Results Stroke occurred in 8.2% of patients in the clopidogrel-aspirin group, as compared with 11.7% of those in the aspirin group (hazard ratio, 0.68; 95% confidence interval, 0.57 to 0.81; P<0.001). Moderate or severe hemorrhage occurred in seven patients (0.3%) in the clopidogrel-aspirin group and in eight (0.3%) in the aspirin group (P=0.73); the rate of hemorrhagic stroke was 0.3% in each group.

Conclusions Among patients with TIA or minor stroke who can be treated within 24 hours after the onset of symptoms, the combination of clopidogrel and aspirin is superior to aspirin alone for reducing the risk of stroke in the first 90 days and does not increase the risk of hemorrhage.

Stroke thrombolysis outcomes from registry

Data from a large national stroke registry are reported to show that in patients who received tPA, outcomes were worse the later it was given. From a registry of over a million patients, the study group included 58353 patients from 1395 sites treated after emergency department arrival with IV tPA within 4.5 hours of symptom onset. Reported odds ratios were small but statistically significant in this large sample size. There was a 4.9% rate of intracranial haemorrhage.

As there is no comparison with patients who did not receive tPA, one cannot conclude from this study that tPA is either beneficial or harmful. It may however be used as an argument that if you’re working in a centre where the patients are going to get the tPA, it’s advisable not to delay it.

Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke
JAMA. 2013 Jun 19;309(23):2480-8


IMPORTANCE: Randomized clinical trials suggest the benefit of intravenous tissue-type plasminogen activator (tPA) in acute ischemic stroke is time dependent. However, modest sample sizes have limited characterization of the extent to which onset to treatment (OTT) time influences outcome; and the generalizability of findings to clinical practice is uncertain.

OBJECTIVE: To evaluate the degree to which OTT time is associated with outcome among patients with acute ischemic stroke treated with intraveneous tPA.

DESIGN, SETTING, AND PATIENTS: Data were analyzed from 58,353 patients with acute ischemic stroke treated with tPA within 4.5 hours of symptom onset in 1395 hospitals participating in the Get With The Guidelines-Stroke Program, April 2003 to March 2012.

MAIN OUTCOMES AND MEASURES: Relationship between OTT time and in-hospital mortality, symptomatic intracranial hemorrhage, ambulatory status at discharge, and discharge destination.

RESULTS: Among the 58,353 tPA-treated patients, median age was 72 years, 50.3% were women, median OTT time was 144 minutes (interquartile range, 115-170), 9.3% (5404) had OTT time of 0 to 90 minutes, 77.2% (45,029) had OTT time of 91 to 180 minutes, and 13.6% (7920) had OTT time of 181 to 270 minutes. Median pretreatment National Institutes of Health Stroke Scale documented in 87.7% of patients was 11 (interquartile range, 6-17). Patient factors most strongly associated with shorter OTT included greater stroke severity (odds ratio [OR], 2.8; 95% CI, 2.5-3.1 per 5-point increase), arrival by ambulance (OR, 5.9; 95% CI, 4.5-7.3), and arrival during regular hours (OR, 4.6; 95% CI, 3.8-5.4). Overall, there were 5142 (8.8%) in-hospital deaths, 2873 (4.9%) patients had intracranial hemorrhage, 19,491 (33.4%) patients achieved independent ambulation at hospital discharge, and 22,541 (38.6%) patients were discharged to home. Faster OTT, in 15-minute increments, was associated with reduced in-hospital mortality (OR, 0.96; 95% CI, 0.95-0.98; P < .001), reduced symptomatic intracranial hemorrhage (OR, 0.96; 95% CI, 0.95-0.98; P < .001), increased achievement of independent ambulation at discharge (OR, 1.04; 95% CI, 1.03-1.05; P < .001), and increased discharge to home (OR, 1.03; 95% CI, 1.02-1.04; P < .001).

CONCLUSIONS AND RELEVANCE: In a registry representing US clinical practice, earlier thrombolytic treatment was associated with reduced mortality and symptomatic intracranial hemorrhage, and higher rates of independent ambulation at discharge and discharge to home following acute ischemic stroke. These findings support intensive efforts to accelerate hospital presentation and thrombolytic treatment in patients with stroke.

Endovascular stroke treatment

Two randomised controlled trials have been published which compare endovascular stroke treatments with intravenous tPA. Both the American Interventional Management of Stroke (IMS) III trial (1) and the Italian SYNTHESIS Expansion trial (2) had Modified Rankin Scores as their primary endpoint. No significant differences in this outcome or in mortality or intracranial haemorrhage rates were found in either trial, and IMS III was terminated early due to futility.

A third trial, from North America, called MR RESCUE, randomised patients within 8 hours after the onset of large vessel, anterior-circulation strokes to undergo mechanical embolectomy or receive standard care(3). No clinical outcome differences were demonstrated.

An accompanying editorial (4) draws the following conclusion:


“The IMS III and SYNTHESIS Expansion studies show that intravenous thrombolysis should continue to be the first-line treatment for patients with acute ischemic stroke within 4.5 hours after stroke onset, even if imaging shows an occluded major intracranial artery. Beyond 4.5 hours, the MR RESCUE trial does not provide data supporting the use of endovascular treatment in patients with an ischemic penumbra of any size.”

Many might argue that showing endovascular treatment is equivalent to thrombolysis just means endovascular treatment doesn’t work, because a significant proportion of the emergency medicine community views this as the correct interpretation of a thorough analysis of the stroke thrombolysis literature.

1. Endovascular Therapy after Intravenous t-PA versus t-PA Alone for Stroke
NEJM Feb 8, 2013 Full Text Link

2. Endovascular Treatment for Acute Ischemic Stroke
NEJM Feb 8, 2013 Full Text Link

3. A Trial of Imaging Selection and Endovascular Treatment for Ischemic Stroke
NEJM Feb 8, 2013 Full Text Link

4.Endovascular Treatment for Acute Ischemic Stroke — Still Unproven
NEJM Feb 8, 2013 Full Text Link

Phentolamine for neurogenic pulmonary oedema

A single case report might not be practice changing, but it’s helpful to know about this option:

A patient with acute intracerebral haemorrhage developed hyoxaemia due to neurogenic pulmonary oedema, accompanied by a labile blood pressure and elevated catecholamine levels.

Nicardipine and other antihypertensive agents including metoprolol, hydralazine, and labetalol were tried without benefit, and the patient continued to deteriorate.

Phentolamine was tried. The introduction, withdrawal, and reintroduction of phentolamine and the clinical status of the patient is described convincingly:



a phentolamine infusion was started at 0.17 mg/min and titrated for BP control. Over 6 h, the FIO2 requirements dropped precipitously, gas exchange improved, and the chest radiograph showed improvement of pulmonary edema. When the hospital supply of phentolamine was exhausted, the clinical status deteriorated rapidly. Within just 15 h of the discontinuation of phentolamine, the PaO2 fell from 166 mm Hg to 66 mm Hg, and FIO2 requirements rose from 60% to 100%. When the phentolamine supply was replenished and the infusion restarted, the same rapid improvement was observed and BP stabilized.


Phentolamine is a potent competitive antagonist at both alpha 1 and alpha 2 receptors . Phentolamine causes a reduction in peripheral resistance through blockade of alpha 1 receptors and possibly alpha 2 receptors on vascular smooth muscle.



Abstract
Neurogenic pulmonary edema (NPE) is a clinical syndrome characterized by the acute onset of pulmonary edema following a significant CNS insult. The cause is believed to be a surge of catecholamines that results in cardiopulmonary dysfunction. Although there are myriad case reports describing CNS events that are associated with this syndrome, few studies have identified specific treatment modalities. We present a case of NPE caused by an intracranial hemorrhage from a ruptured arteriovenous malformation. We uniquely document a rise and fall of serum catecholamine levels correlating with disease activity and a dramatic clinical response to IV phentolamine.


Neurogenic Pulmonary Edema: Successful Treatment With IV Phentolamine
Chest March 2012 vol. 141 no. 3 793-795

Neurologic complications in infective endocarditis

More than half of patients admitted to ICU with left-sided infective endocarditis developed neurologic complications

OBJECTIVE: To describe the clinical spectrum of infective endocarditis in critically ill patients and assess the impact of neurologic complications on outcomes.

DESIGN: Prospective multicenter observational study conducted from April 2007 to October 2008.

SETTING: Thirty-three intensive care units in 23 university-affiliated and 10 general French hospitals.

PATIENTS: Two hundred twenty-five patients with definite IE were studied. Factors associated with neurologic complications and predictors of 3-month mortality were identified by logistic regression analysis. Functional outcomes of patients with neurologic complications were evaluated with the modified Rankin Scale.

MEASUREMENTS AND MAIN RESULTS: Among 198 patients with definite left-sided infective endocarditis, 108 (55%) experienced at least one neurologic complication. These complications were ischemic stroke (n = 79), cerebral hemorrhage (n = 53), meningitis or meningeal reaction (n = 41), brain abscess (n = 14), and mycotic aneurysm (n = 10). Factors independently associated with neurologic complications were (subhazard ratio [95% confidence interval]): Staphylococcus aureus infective endocarditis (1.45 [1.02-2.05]), mitral valve infective endocarditis (1.54 [1.07-2.21]), and nonneurologic embolic events (1.51 [1.09-2.09]). In contrast, health care-associated infective endocarditis had a protective effect (0.46 [0.27-0.77]). Multivariate analysis identified three variables associated with 3-month mortality (odds ratio [95% confidence interval]): neurologic failure, as defined as a Glasgow Coma Scale <10 (7.41 [2.89-18.96]), S. aureus infective endocarditis (3.26 [1.53-6.94]), and severe comorbidities before admission as defined as a Charlson score >2 (3.16 [1.47-6.77]). Among the 106 patients with neurologic complications assessed at follow-up (3.9 [3-8.5] months), 31 (29%) had a modified Rankin Scale score ≤3 (ability to walk without assistance), nine (9%) a modified Rankin Scale score of 4 or 5 (severe disability), and 66 (62%) a modified Rankin Scale score of 6 (death).

CONCLUSIONS: Neurologic events are the most frequent complications in infective endocarditis patients requiring intensive care unit admission. They contribute to a severe prognosis, leaving less than one-third of patients alive with functional independence. Neurologic failure at intensive care unit admission represents a major determinant of mortality regardless of the underlying neurologic complication.

Neurologic complications and outcomes of infective endocarditis in critically ill patients: The ENDOcardite en REAnimation prospective multicenter study
Crit Care Med. 2011 Jun;39(6):1474-1481

Status epilepticus review

A review on status epilepticus, differentiating complex partial status from generalised convulsive status:

PURPOSE OF REVIEW: Status epilepticus is one of the most common emergencies in neurology, and every third patient does not respond to adequate first-line treatment. Refractory status epilepticus may be associated with increased morbidity and mortality, and new treatment options are urgently required. This review critically discusses recently published data regarding the role of ‘new’ antiepileptic drugs, the efficacy and safety of anesthetic agents, and the overall clinical outcome that is an integral part of treatment decisions.

RECENT FINDINGS: In complex partial status epilepticus, levetiracetam may be administered after failure of first-line and/or second-line agents. Lacosamide may be an interesting new adjunct, but reliable data are pending. In the treatment of refractory generalized convulsive status epilepticus, propofol seems to be as efficient as barbiturates. The latter are associated with prolonged ventilation times due to redistribution kinetics, whereas the former bears the risk of propofol infusion syndrome if administered continuously. Even after prolonged treatment with anesthetics over weeks, survival with satisfactory functional outcome is possible.

SUMMARY: Unambiguous recommendations regarding treatment strategies for refractory status epilepticus are limited by a lack of reliable data. Therefore, randomized controlled trials or at least prospective observational studies based on strict protocols incorporating long-term outcome data are urgently required.

Treatment strategies for refractory status epilepticus
Curr Opin Crit Care. 2011 Apr;17(2):94-100

Salt or sugar on the brain

A meta-analysis suggests hypertonic saline may be more effective at lowering intracranial pressure than mannitol. An accompanying editorial cleverly entitled ‘Salt or sugar on the brain: Does it matter except for taste?’ suggests one reason hypertonic saline (HTS) has not replaced mannitol in clinical practice is that too many different regimens of HTS, in terms of concentration, dose, bolus vs. continuous infusions, and plus or minus supplementation of colloids, have been utilised. Because only 112 patients with 184 episodes of increased ICP were treated with each medication in this meta-analysis, the editorialist agrees with the authors in suggesting a larger randomised study is needed.

OBJECTIVES: Randomized trials have suggested that hypertonic saline solutions may be superior to mannitol for the treatment of elevated intracranial pressure, but their impact on clinical practice has been limited, partly by their small size. We therefore combined their findings in a meta-analysis.

DATA SOURCES: We searched for relevant studies in MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and ISI Web of Knowledge.

STUDY SELECTION: Randomized trials were included if they directly compared equiosmolar doses of hypertonic sodium solutions to mannitol for the treatment of elevated intracranial pressure in human subjects undergoing quantitative intracranial pressure measurement.

DATA EXTRACTION: Two investigators independently reviewed potentially eligible trials and extracted data using a preformed data collection sheet. Disagreements were resolved by consensus or by a third investigator if needed. We collected data on patient demographics, type of intracranial pathology, baseline intracranial pressure, osms per treatment dose, quantitative change in intracranial pressure, and prespecified adverse events. Our primary outcome was the proportion of successfully treated episodes of elevated intracranial pressure.

DATA SYNTHESIS: Five trials comprising 112 patients with 184 episodes of elevated intracranial pressure met our inclusion criteria. In random-effects models, the relative risk of intracranial pressure control was 1.16 (95% confidence interval, 1.00-1.33), and the difference in mean intracranial pressure reduction was 2.0 mm Hg (95% confidence interval, -1.6 to 5.7), with both favoring hypertonic saline over mannitol. A mild degree of heterogeneity was present among the included trials. There were no significant adverse events reported.

CONCLUSIONS: We found that hypertonic saline is more effective than mannitol for the treatment of elevated intracranial pressure. Our meta-analysis is limited by the small number and size of eligible trials, but our findings suggest that hypertonic saline may be superior to the current standard of care and argue for a large, multicenter, randomized trial to definitively establish the first-line medical therapy for intracranial hypertension.

Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: A meta-analysis of randomized clinical trials
Crit Care Med. 2011 Mar;39(3):554-9

Cardiac arrest drugs and pupils

Although not predictive immediately post-cardiac arrest in the emergency department, dilated unreactive pupils two or three days later on the ICU may indicate a hopeless prognosis. We know from our experience with adrenaline (epinephrine) infusions that this drug does not prevent pupils from reacting to light, but what about atropine?

A letter by Dr Sophie MacDougall-Davis in Resuscitation describes a 66 year old male patient admitted to the ICU after an intraoperative PEA arrest during which he received 3 mg intravenous atropine. Post arrest and post anaesthesia he was awake with no neurological deficit, but eight hours after the cardiac arrest his pupils remained fixed and dilated, and were dilated with only a very slight reaction the next morning and remained sluggish at forty-eight hours, normalising at seventy-two hours. A possible reason for its prolonged action may be uptake of atropine from the plasma into the aqueous humor of the eye, followed by its slow release.

Dr MacDougall-Davis cautions:

When assessing pupils in comatose cardiac arrest survivors, the potential for atropine to have a prolonged effect on pupil size and reactivity should be considered.

Atropine, fixed dilated pupils and prognostication following cardiac arrest
Resuscitation. 2011 Feb;82(2):232