Tag Archives: PCR


London Trauma Conference Day 2

London Trauma Conference 2013 – Day 2  by Dr Louisa Chan

So I find myself torn today: do I join the the main track with a Major incident theme or the Cardiac Masterclass? I never liked the thought of missing out on anything so I went to a bit of both.

 
Cardiac Masterclass

A lot of people probably think that managing cardiac arrest isn’t challenging and a bit dull because the patient is dead. But the Cardiac Masterclass would inspire you to think of a bright future for cardiac arrest management.

Mark Whitbread reminded us of how important dispatch is in the chain of survival. How much focus do we put on improving bystander CPR rates? Dispatcher assisted CPR has been shown to improve outcomes and needs to be skilfully done.

Ajay Jain pushes for all OHCA patients to be taken to a Cardiac Arrest centre for PCI. Why? Because the results he has from his centre for PCI in OHCA patients results in 77% (101/132) patients surviving to hosp discharge, 65% neurologically intact.

He also tells us that the ECG post arrest is a very poor predictor of PCI findings (although STEMI predicts a positive result) so they all should have PCI.
Lyon-survivors

 

More data from TOPCAT shows us that non survivors of OHCA are easy to cool.

 

LTC-mice

 

 

And maybe we should be cooling DURING cardiac arrest to minimise the reperfusion injury.

 

 

For persistent VF Prof Redwood says revascularisation is the key; when that doesn’t work then reducing LV volume may help so aspiration or an Impella may work. Failing that – ECMO.

 
Major Incidents

Major Incidents by their nature do not happen every day, so experience in these incidents is limited. The challenge then is how can we learn from incidents?

A standardised reporting system for a major incident database would be a good idea – www.majorincidentreporting.org – is where you will find the standard report form and open access database.

And then all I can suggest is that you need to come to the LTC and listen to the accounts of those who have been there. We heard about the Tokyo Sarin attack, Mumbai, and a very compelling story of multiple drownings from Steen Barnung.

Lessons from Tokyo – Sarin attack:

It will happen again
It will be chaos
Crowds cannot be controlled
Comms will fail
Clinical diagnosis – need a senior clinician
Treatment must be immediately available – 3min to absorb sarin
Decontamination – get naked, 90% decon with clothes removal.
Stream casualties
Empower the man on the ground.

 

Gadgets

LTC-MSUThe great thing about the London Trauma Conference is that it’s not just about the content of the tracks, there’s the networking and the opportunity to see new pieces of equipment.

The Norwegians won on the equipment front with their Mobile Stroke Unit. It’s due to go on line in 2014.

So TTFN and more from me on Day 3 of #LTC2013

Enoxaparin beats heparin for PCI

This is of interest to those of us in retrieval medicine, for logistic reasons: an infusion of heparin can be an unnecessary hassle during transport, especially if a subcutaneous injection prior to retrieval is a satisfactory alternative. This systematic review and meta-analysis shows enoxaparin appears to be superior to unfractionated heparin in reducing mortality and bleeding outcomes during percutaneous coronary intervention. This applies particularly to patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction



OBJECTIVE: To determine the efficacy and safety of enoxaparin compared with unfractionated heparin during percutaneous coronary intervention.


DESIGN: Systematic review and meta-analysis.


DATA SOURCES: Medline and Cochrane database of systematic reviews, January 1996 to May 2011.


STUDY SELECTION: Randomised and non-randomised studies comparing enoxaparin with unfractionated heparin during percutaneous coronary intervention and reporting on both mortality (efficacy end point) and major bleeding (safety end point) outcomes.


DATA EXTRACTION: Sample size, characteristics, and outcomes, extracted independently and analysed.


DATA SYNTHESIS: 23 trials representing 30 966 patients were identified, including 10 243 patients (33.1%) undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction, 8750 (28.2%) undergoing secondary percutaneous coronary intervention after fibrinolysis, and 11 973 (38.7%) with non-ST elevation acute coronary syndrome or stable patients scheduled for percutaneous coronary intervention. A total of 13 943 patients (45.0%) received enoxaparin and 17 023 (55.0%) unfractionated heparin. Enoxaparin was associated with significant reductions in death (relative risk 0.66, 95% confidence interval 0.57 to 0.76; P<0.001), the composite of death or myocardial infarction (0.68, 0.57 to 0.81; P<0.001), and complications of myocardial infarction (0.75, 0.6 to 0.85; P<0.001), and a reduction in incidence of major bleeding (0.80, 0.68 to 0.95; P=0.009). In patients who underwent primary percutaneous coronary intervention, the reduction in death (0.52, 0.42 to 0.64; P<0.001) was particularly significant and associated with a reduction in major bleeding (0.72, 0.56 to 0.93; P=0.01).


CONCLUSION: Enoxaparin seems to be superior to unfractionated heparin in reducing mortality and bleeding outcomes during percutaneous coronary intervention and particularly in patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction.


Efficacy and safety of enoxaparin versus unfractionated heparin during percutaneous coronary intervention: systematic review and meta-analysis

BMJ. 2012 Feb 3;344:e553

Which cardiac arrest survivors have a positive angio?

A retrospective study of out-of-hospital cardiac arrest patients attended by a French pre-hospital system was performed to assess the predictive factors for positive coronary angiography.

OBJECTIVES: Coronary angiography is often performed in survivors of out-of-hospital cardiac arrest, but little is known about the factors predictive of a positive coronary angiography. Our aim was to determine these factors.

METHODS: In this 7-year retrospective study (January 2000-December 2006) conducted by a French out-of-hospital emergency medical unit, data were collected according to Utstein style guidelines on all out-of-hospital cardiac arrest patients with suspected coronary disease who recovered spontaneous cardiac activity and underwent early coronary angiography. Coronary angiography was considered positive if a lesion resulting in more than a 50% reduction in luminal diameter was observed or if there was a thrombus at an occlusion site.

RESULTS: Among the 4621 patients from whom data were collected, 445 were successfully resuscitated and admitted to hospital. Of these, 133 were taken directly to the coronary angiography unit, 95 (71%) had at least one significant lesion, 71 (53%) underwent a percutaneous coronary intervention, and 30 survived [23%, 95% confidence interval (CI): 16-30]. According to multivariate analysis, the factors predictive of a positive coronary angiography were a history of diabetes [odds ratio (OR): 7.1, 95% CI: 1.4-36], ST segment depression on the out-of-hospital ECG (OR: 5.4, 95% CI: 1.1-27.8), a history of coronary disease (OR: 5.3, 95% CI: 1.4-20.1), cardiac arrest in a public place (OR: 3.7, 95% CI: 1.3-10.7), and ventricular fibrillation or ventricular tachycardia as initial rhythm (OR: 3.1, 95% CI: 1.1-8.6).

CONCLUSION: Among the factors identified, diabetes and a history of coronary artery were strong predictors for a positive coronary angiography, whereas ST segment elevation was not as predictive as expected.

Predictive factors for positive coronary angiography in out-of-hospital cardiac arrest patients
Eur J Emerg Med. 2011 Apr;18(2):73-6

Delayed door-to-balloon even with helicopters

For a whole bunch of reasons, patients with ST-elevation myocardial infarction who undergo interhospital transfer for primary percutaneous coronary intervention may not meet the required 90 minute door-to-balloon time. In a new study of patients transferred by helicopter, only 3% of STEMI patients transferred for reperfusion met the 90-minute goal. Should this result in an increase in the use of fibrinolysis at non–percutaneous coronary intervention hospitals?

Opportunity for gratuitous helicopter shot never knowingly declined

STUDY OBJECTIVE: Early reperfusion portends better outcomes for ST-segment elevation myocardial infarction (STEMI) patients. This investigation estimates the proportions of STEMI patients transported by a hospital-based helicopter emergency medical services (EMS) system who meet the goals of 90-minute door-to-balloon time for percutaneous coronary intervention or 30-minute door-to-needle time for fibrinolysis.

METHODS: This was a multicenter, retrospective chart review of STEMI patients flown by a hospital-based helicopter service in 2007. Included patients were transferred from an emergency department (ED) to a cardiac catheterization laboratory for primary or rescue percutaneous coronary intervention. Out-of-hospital, ED, and inpatient records were reviewed to determine door-to-balloon time and door-to-needle time. Data were abstracted with a priori definitions and criteria.

RESULTS: There were 179 subjects from 16 referring and 6 receiving hospitals. Mean age was 58 years, 68% were men, and 86% were white. One hundred forty subjects were transferred for primary percutaneous coronary intervention, of whom 29 had no intervention during catheterization. For subjects with intervention, door-to-balloon time exceeded 90 minutes in 107 of 111 cases (97%). Median door-to-balloon time was 131 minutes (interquartile range 114 to 158 minutes). Thirty-nine subjects (21%) received fibrinolytics before transfer, and 19 of 39 (49%) received fibrinolytics within 30 minutes. Median door-to-needle time was 31 minutes (interquartile range 23 to 45 minutes).

CONCLUSION: In this study, STEMI patients presenting to non-percutaneous coronary intervention facilities who are transferred to a percutaneous coronary intervention-capable hospital by helicopter EMS do not commonly receive fibrinolysis and rarely achieve percutaneous coronary intervention within 90 minutes. In similar settings, primary fibrinolysis should be considered while strategies to reduce the time required for subsequent interventional care are explored.

Reperfusion Is Delayed Beyond Guideline Recommendations in Patients Requiring Interhospital Helicopter Transfer for Treatment of ST-segment Elevation Myocardial Infarction.
Ann Emerg Med. 2011 Mar;57(3):213-220

Balloon pump before PCI? Nah.

High risk patients benefit from pre-operative intra-aortic balloon counterpulsation (IABP) prior to coronary artery bypass surgery. Would the same apply to patients undergoing percutaneous coronary intervention (PCI)?
A multicentre randomised controlled trial was conducted on over 300 patients with severe LV dysfunction and extensive coronary disease. The intervention was elective insertion of IABP before PCI. The composite primary end point of death, acute myocardial infarction, cerebrovascular event, or further revascularization at hospital discharge was not reduced in the intervention group.
These results do not support a strategy of routine IABP placement before PCI in all patients with severe left ventricular dysfunction and extensive coronary disease.

Elective Intra-aortic Balloon Counterpulsation During High-Risk Percutaneous Coronary Intervention
JAMA. 2010;304(8):867-874

PCI and therapeutic hypothermia

Percutaneous coronary intervention did not increase the risk of dysrhythmia, infection, coagulopathy, or hypotension associated with therapeutic hypothermia after cardiac arrest. Intensivists and cardiologists should perhaps agree that this adds to existing evidence that the two therapies are not mutually exclusive.
Feasibility and safety of combined percutaneous coronary intervention and therapeutic hypothermia following cardiac arrest
Resuscitation. 2010 Apr;81(4):398-403