Tag Archives: physician

The Area Under The Suffering Curve

“What’s your leadership style Cliff? How do you like to run the emergency department?”

Our new fellow had asked a reasonable question. Although I’d never had to summarise it before, my reply came immediately: “I see my role as doing the most for the most by reducing the sum total of human suffering in the ED – both patients and staff”.

I hadn’t really reflected on this before. Obviously my clinical priority is resuscitation, but the reality is that resuscitation only contributes to a small proportion of ED workload. And when our resources and attention are prioritised to the resus room, the department fills with other patients in pain or distress, and their anxious relatives and parents(1).

Examples of the suffering, in patients, relatives, and staff, include:

Emergency departments really can be melting pots of human suffering, but there is so much we can do to reduce or relieve that suffering. We just need to expand our view of our role from ‘diagnose and treat illness’ to ‘care for patients and their families’.

I believe an emergency physician can do much to reduce the ‘area under the curve’ – from listening to the nurses, buying a round of coffee, making sure rest breaks happen; to relieving pain, thirst and cold; to trying to prevent illness and injury from claiming someone’s loved ones; to being understanding to an admitting specialty colleague; to taking the time to explain to parents and relatives what is going on, and that you are taking their presentation seriously.

How I believe we can influence human suffering in the ED.
This is a graphic to illustrate a concept, not a graph based on data.


I also believe this approach provides some protection from burnout. It is easy to be concerned with the difficult aspects of our job that are outside our control, which can result in stress and a sense of powerlessness. But there are so many things WITHIN our control that can make such a difference, that this is where our attention should focus. This is the ‘Circle of Influence’ described by Steven Covey in “The 7 Habits of Highly Effective People”, in which he argues that the first habit, Proactivity, is demonstrated by people who work on problems within their circle of influence, rather than wasting time on those things outside it. Not only will this provide us with more satisfaction and sustainability in our career, it should also make us happier people, since expressing kindness for other people is a key component in the recipe for human happiness (which I describe here).

Of course, the other staff can also make a massive difference. However as the emergency physician clinically in charge of the floor, I have a responsibility to lead by example, and can exert far greater influence than more junior staff. As summarised recently by Liz Crowe and colleagues(2):

EM doctors as the leads of the ED often set the ‘tone’ for the interdisciplinary staff within the team. Each EM doctor can choose to actively contribute to building a safe and supportive culture of collegial
support, professional development and learning through high quality communication, humour and creating a sense of team within their departments.

So let’s ALL set the tone. Support our teams, and show kindness to them and our patients. We can all help reduce the Area Under the Suffering Curve.



1. Body R, Kaide E, Kendal S, Foëx B. Not all suffering is pain: sources of patients’ suffering in the emergency department call for improvements in communication from practitioners. Emerg Med J. 2015 Jan;32(1):15–20.

2. Crowe L, Young J, Turner J. The key to resilient individuals is to build resilient and adaptive systems. Emerg Med J. 2017 Jun 26;34(7):428–9.

Upstairs vs Downstairs: an EPIC Conundrum

A new breed, and new terminology

USAflagb&WResusScott Weingart MD and colleagues have published a discussion paper [1] outlining the role of emergency physicians who have completed additional critical care training – ED intensivists – and the potential benefits these individuals might bring to patients, emergency departments, and their emergency physician colleagues.

The paper also introduces a glossary of new terms which might help clarify future discussion of this practice area:

Emergency medicine critical care a subspecialty of emergency medicine dealing with the care of the critically ill both in the ED and in the rest of the hospital
EP intensivist a physician who has completed a residency in emergency medicine and a fellowship in critical care
ED critical care emergency medicine critical care practiced specifically in the ED
ED intensivist (EDI) EPIs who practice ED critical care as a portion of their clinical time
Resuscitationists EPs who have additional knowledge, training, and interest in the care of the critically ill patient
EDICU a unit within an ED with the same or similar staffing, monitoring, and capability for therapies as an ICU
RED-ICU a hybrid resuscitation area and EDICU allowing a department to adopt the ED intensive care model with minimal cost and no changes to the physical plant

Potential benefits of ED-intensivists – and associated adequately staffed areas within ED that facilitate ongoing critical care delivery – include:

Full intensive care provided to patients unable to be moved to ICU (usually due to bed unavailability)
Development of protocols and care pathways that allow other EPs to deliver enhanced critical care
Gaining of advanced skills for ED nurses
Removal of need for ICU bed for conditions that can be improved in a few hours (eg. some overdoses, DKA, acute pulmonary oedema)
Cost saving due to decreased ICU stay (if the above ‘short term critical care’ patients are admitted to ICU, ward bed unavailability can make it difficult to discharge them from ICU)
Additional airway skills in ED (and training around that)
Improved invasive and non-invasive ventilatory management (and training) in ED
Gaining of ED experience in ventilator weaning and extubation
Gaining of ED experience in haemodynamic monitoring, vasoactive support, and even mechanical circulatory support (balloon pumps and ECMO)
Improved sepsis care
Improved post-cardiac arrest care
Improved trauma management
Greater exposure to invasive procedures
Improved end of life care
Better critical care exposure for trainees

Improved ED-ICU communication and shared protocols

Scott’s whole mission is about bringing ‘upstairs care downstairs’, and educating others to do that, at which he is a true master. No doubt he will singlehandedly have inspired a large cohort of emergency physicians to train in critical care. Examples of ED intensivists and their roles are listed here on the EMCrit site.

Emergency physician intensivists in the Old Country

epic__logoUKflagAs an ‘ED-intensivist’ myself, I do believe many of those advantages can be realised. In the UK when I originally trained in both EM and ICM there was a small number of similarly trained individuals and we collectively called ourselves ‘EPIC’ – ‘Emergency Physicians in Intensive Care’.

Our shared energy and enthusiasm led to a dedicated conference in 2011 and it’s possible that our proselytizing combined with publications like Terry Brown’s ‘Emergency physicians in critical care: a consultant’s experience‘[2] may have made some small contribution to the subsequent explosion in interest in dual accreditation in EM & ICM in the UK.

Disappearing upstairs

AusflagWhen I moved to Australia in 2008 I was excited to hear that emergency docs now made up the largest proportion of dual trained new intensivists. When I asked a leading member of this group whether he saw any role for an ‘EPIC’ community in Australia I was surprised and disappointed with the response:

‘Nice idea but I don’t see the point. I can’t think of anyone who dual trained who’s still working in emergency medicine’

So it seems those who were in the best position to bring upstairs care downstairs had all disappeared upstairs. Many will admit it’s not just because they find critical care more interesting than emergency medicine; the combination of a significantly higher income (through private practice) with better working conditions plays a significant role.

There are other opportunities in Australia for emergency physicians to practice critical care. Prehospital & retrieval medicine services undertake interhospital critical care transport of patients from small and often remote facilities where all of the first few hours of intensive care must be delivered by retrieval teams in often challenging environments with limited personnel and equipment. In some cases it’s these retrieval physicians who are able to fulfil the role of ED-intensivist in their own EDs.

Integrated critical care models and SuperDoctors

ChrisTIconAnother Australian example is the ‘integrated critical care’ model pioneered in some regional centres in rural New South Wales where emergency physicians with critical care training aim to provide seamless care to patients in the prehospital, ED, ICU and ward environments. I was lucky enough to do some locum shifts in one of these centres – Tamworth – where the service is delivered by some of the most highly skilled and dedicated physicians I’ve ever met. Check out their registrar job ad for a flavour of their work. This model was described in a 2003 publication[3] by my Sydney HEMS colleague Craig Hore which lists its features as follows:

Features of integrated critical care
Multiskilled critical-care specialists trained and experienced in the various aspects of critical care in rural hospitals.

Multidisciplinary critical-care teams that provide:

A more seamless interface between the various phases of critical care and between its respective disciplines;

A rapid response to, and a continuum of care for, critically ill and injured patients;

Clinical leadership in evaluating and managing critically ill and injured patients, both in the hospital (including the emergency department, critical-care unit and hospital wards) and in the community (including retrievals, and support for ambulance crews, peripheral hospitals and general practitioners); and

Training of medical students, medical staff, nursing staff and allied health professionals to recognise and provide a systematic approach to critical illness and injury.

Team members who are empowered to work beyond perceived traditional boundaries, but within the realms of their clinical expertise and credentials, to enable the best use of available resources.

So it appears the benefits to patients, hospitals, and team skills of ED-intensivists have been espoused for some years in the Anglo-Australian setting, and different practice models evolve to best serve local need.

Resuscitating the resuscitationists

UKflagIs it time to revive EPIC? I chased up my UK buddies who co-founded it, and here are extracts from their replies (note ‘CCT’ refers to certificate of completion of training – the UK equivalent of specialist accreditation or board certification):

“Interesting to hear that most Aussies leave EM, my experience of [our regional] trainees is the opposite; of 4 EM / ITU dual CCT over last 5 years, I’m the only one still doing a little bit of CCM, the rest have all ended up in full time EM posts, despite all doing periods of locum consultant work in CCM. (Although, after last 4 winter months of UK EM, I’m beginning to appreciate that I backed the wrong horse! (In the wrong country!!))”
“Having recently dropped ICU/ED 40/60 mix for full time ED i think those gravitating to ICU have a point – an error on my part. The ED represents much more intense work with fewer staff and a work load that far far exceeds resources. As such time to deliver care falls and skills with it. I have just spend 5 weeks [overseas]. I spent time with several directors who pointed out they no longer look to the UK for high quality ED docs as they manage depts as opposed to caring for patients, lack critical care skills and lack the experience to review and manage patients as they improve or deteriorate – a sad state of affairs indeed.”
“I would like to see EPIC back in force and do see an increasing role. around 1 in 4 of our trainees here are looking to joint qualify and we have 3 in their last 2 years. two are currently looking for posts but struggling to find any with a 50-50 mix and are been told to choose one or the other both by prospective ED and ICU employers.”
“I am concerned that dual trained folk here will, like in Australia gravitate to ICU. Whether that is a reflection of where EM is currently in the UK or a personal reflection I’m not sure. Where as I still have days in the ED where I come home and think ‘best job in the world’ these are overshadowed by the stresses of trying to deliver quality care in a failing system. My impression is that urgent care in the UK may well implode soon as ever decreasing workforce meets an over increasing work load. Inevitable closures of units will speed up this process. I currently have a 50/50 ICM/ED job split but that might change to become more ICU.”
“The ED/ICU community in the UK is growing and it wlll be interesting to see the effect of the ICM CCT has on this. There is sadly still a paucity of ED/ICU jobs in the UK and we probably missed a trick with the trauma centres.”
“It would be great to re-create EPIC to make it a real player for the future.”

So it appears emergency physician intensivists are growing in number, but employment prospects in both specialties are not guaranteed. If we are to recruit them to work as ED intensivists (ie. providing critical care in the ED) we have a challenge in making such posts attractive and sustainable. Emergency medicine in the UK is suffering at the moment, and we’ll have to work hard to stop those who are dual trained from disappearing upstairs.

Your comments on this are invited. Should there be more critical care- trained EPs? Shouldn’t ALL EPs have the right critical care skills to manage the first few hours of critical care? Can you call yourself an emergency physician and not be a ‘resuscitationist’? Where do retrievalists fit into this spectrum? How do we help motivate those who are dual trained to stay in the ED for some of their time? Is there a need for a body like EPIC to guide those who are considering dual training, and to provide recommendations to employers and physicians on models of care and job planning? I would love to get more of an international perspective on this issue.

1. ED intensivists and ED intensive care units
Am J Emerg Med. 2013 Mar;31(3):617-20
Full text link available from here

2. Emergency physicians in critical care: a consultant’s experience
Emerg Med J. 2004 Mar;21(2):145-8
Full text link available from here

There is a growing interest in the interface between emergency medicine and critical care medicine. Previous articles in this journal have looked at the opportunities and advantages of training in critical care medicine for emergency medicine trainees. In the UK there are a small number of emergency physicians who also have a commitment to critical care medicine. This article describes a personal experience of such a job, looking at the advantages and disadvantages. Depending upon future developments in the role of emergency medicine in the UK, together with the proposed expansion in critical care medicine, such posts may become more common.

3. Integrated critical care: an approach to specialist cover for critical care in the rural setting
Med J Aust. 2003 Jul 21;179(2):95-7

Critical care encompasses elements of emergency medicine, anaesthesia, intensive care, acute internal medicine, postsurgical care, trauma management, and retrieval. In metropolitan teaching hospitals these elements are often distinct, with individual specialists providing discrete services. This may not be possible in rural centres, where specialist numbers are smaller and recruitment and retention more difficult. Multidisciplinary integrated critical care, using existing resources, has developed in some rural centres as a more relevant approach in this setting. The concept of developing a specialty of integrated critical-care medicine is worthy of further exploration.

Traumatic cardiac arrest outcomes

simEver heard anyone spout dogma along the lines of: “it’s a traumatic cardiac arrest – resuscitation is futile as the outcome is hopeless: survival is close to zero per cent”?

I have. Less frequently in recent years, I’ll admit, but you still hear it spout forth from the anus of some muppet in the trauma team. Here’s some recent data to add to the existing literature that challenges the ‘zero per cent survival’ proponents. A Spanish study retrospectively analysed 167 traumatic cardiac arrests (TCAs). 6.6% achieved a complete neurological recovery (CNR), which increased to 9.4% if the first ambulance to arrive contained an advanced team including a physician. Rhythm and age were important: CNR was achieved in 36.4% of VFs, 7% of PEAs, and 2.7% of those in asystole; survival rate by age groups was 23.1% in children, 5.7% in adults, and 3.7% in the elderly.

Since traumatic arrest tends to affect a younger age group than medical arrests, the authors suggest:

Avoiding the potential decrease in life expectancy in this kind of patient justifies using medical resources to their utmost potential to achieve their survival

Since 2.7% of the asystolic patients achieved a CNR, the authors challenge the practice proposed by some authors that Advanced Life Support be withheld in TCA patients with asystole as the initial rhythm:

had that indication been followed, three of our patients who survived neurologically intact would have been declared dead on-scene.”

I’d like to know what interventions were making the difference in these patients. They describe what’s on offer as:

In our EMS, all TCA patients receive ALS on-scene, which includes intubation, intravenous access, fluid and drug therapy, point-of-care blood analysis, and procedures such as chest drain insertion, pericardiocentesis, or Focused Assessment with Sonography for Trauma ultrasonography to improve the treatment of the cause of the TCA.

It appears that crystalloids and colloids are their fluid therapy of choice; unlike many British and Australian physician-based prehospital services they made no mention of the administration of prehospital blood products.

Traumatic cardiac arrest: Should advanced life support be initiated?
J Trauma Acute Care Surg. 2013 Feb;74(2):634-8

BACKGROUND: Several studies recommend not initiating advanced life support in traumatic cardiac arrest (TCA), mainly owing to the poor prognosis in several series that have been published. This study aimed to analyze the survival of the TCA in our series and to determine which factors are more frequently associated with recovery of spontaneous circulation (ROSC) and complete neurologic recovery (CNR).

METHODS: This is a cohort study (2006-2009) of treatment benefits.

RESULTS: A total of 167 TCAs were analyzed. ROSC was obtained in 49.1%, and 6.6% achieved a CNR. Survival rate by age groups was 23.1% in children, 5.7% in adults, and 3.7% in the elderly (p < 0.05). There was no significant difference in ROSC according to which type of ambulance arrived first, but if the advanced ambulance first, 9.41% achieved a CNR, whereas only 3.7% if the basic ambulance first. We found significant differences between the response time and survival with a CNR (response time was 6.9 minutes for those who achieved a CNR and 9.2 minutes for those who died). Of the patients, 67.5% were in asystole, 25.9% in pulseless electrical activity (PEA), and 6.6% in VF. ROSC was achieved in 90.9% of VFs, 60.5% of PEAs, and 40.2% of those in asystole (p < 0.05), and CNR was achieved in 36.4% of VFs, 7% of PEAs, and 2.7% of those in asystole (p < 0.05). The mean (SD) quantity of fluid replacement was greater in ROSC (1,188.8 [786.7] mL of crystalloids and 487.7 [688.9] mL of colloids) than in those without ROSC (890.4 [622.4] mL of crystalloids and 184.2 [359.3] mL of colloids) (p < 0.05).

CONCLUSION: In our series, 6.6% of the patients survived with a CNR. Our data allow us to state beyond any doubt that advanced life support should be initiated in TCA patients regardless of the initial rhythm, especially in children and those with VF or PEA as the initial rhythm and that a rapid response time and aggressive fluid replacement are the keys to the survival of these patients.

London Calling – part 2

Notes from Days 2 & 3 of the London Trauma Conference

Day 2 of the LTC was really good. There were some cracking speakers who clearly had the ‘gift’ when it comes to entertaining the audience. No death by PowerPoint here (although it seems Keynote is now the presentation software of choice!). The theme of the day was prehospital care and major incidents.

The golden nuggets to take away include: (too many to list all of course)

  • ‘Pull’ is the key to rapid extrication from cars if time critical from the Norweigan perspective. Dr Lars Wik of the Norweigen air ambulance presented their method of rapid extrication. Essentially they drag the car back on the road or away from what ever it has crashed into to control the environment and make space (360 style). They put a paramedic in the car whilst this is happening. They then make a cut in the A post near the roof, secure the rear of the car to a fire truck or fixed object with a chain and put another chain around the lower A post and steering wheel that is then winched tight. This has the effect of ‘reversing’ the crash and a few videos showed really fast access to the patient. The car seems to peel open. As they train specifically for it, there doesn’t seem to be any safety problems so far and its much quicker than their old method. I guess it doesnt matter really how you organise a rapid extrication method as long as it is trained for and everyone is on the same page.
  • Dr Bob Winter presented his thoughts on hangings – to date no survivor of a non-judicial hanging has had a C-spine injury, so why do we collar them? Also there seems no point in cooling them. All imaging and concern for these patients should be based on the significant soft tissue injury that can be caused around the neck.
  • Drownings – if the patient is totally submerged probably reasonable to search for 30mins in water that is >6 degrees or 90mins if <6 degrees. After that it becomes a body recovery (unless there is an air pocket or some exceptional circumstance). Patients that have drowned should have early ventilatory support if they show any signs of resp distress.
  • Drs Julian Thompson and Mark Byers reassured us on a variety of safety issues at major incidents. It seems the risk to rescuers from secondary bombs at scene is low. Very few terrorist attacks world wide, ever, have had secondary devices so rescuers should be reassured (a bit). Greatest risk to the rescuer, like always, are the silly simple things that are a risk every day, like tripping over your own feet! With reference to chemical incidents, simple PPE seems to be sufficient for the vast majority of incidents, even fairly significant chemical ones, all this mucking about in full air tight suits is probably pointless and means patients cant be treated (at all). This led to the debate of how much risk should we, as rescue staff, accept? Clearly there are no absolute answers but minimising all risk to the rescuer is often at conflict with your ability to rescue. Where the balance should lie is a matter for organisations and individuals I guess.
  • Sir Prof Keith Porter also gave us an update on the future of Prehospital emergency medicine as a recognised medical specialty. As those in the know, know, the specialty has been recognised by the GMC and the first draft of trainees are currently in post. More deaneries will be following suit soon to begin training but it is likely to take some time to build up large numbers of trained specialists. Importantly for those of us who already have completed our training there will be an option to sub specialise in PHEM but it will involve undertaking the FIMC exam. Great, more exams – see you there.


Day 3 – Major trauma
The focus of day 3 was that of damage control. Damage control surgery and damage control resucitation. We had indepth discussions about how to manage pelvic trauma and some of the finer points of trauma resuscitation.

Specific points raised were:

  • Pelvic binders are great and can replace an ex fix if the abdomen needs opening to fix a spleen for example.
  • You can catheterise patients with pelvic fractures (one gentle try).
  • Most pelvic bleeds are venous which is why surgeons who can pack a pelvis is better than a radiologist who can mainly only treat arterial bleeds.
  • Coagulopathy in trauma is not DIC and is probably caused by peripheral hypoperfusion.
  • All the standard clotting tests that we use (INR etc) are useless and take too long to do. ROTEM or TEG is much better but still not perfect.

Also, as I am sure will please many – pressure isn’t flow so dont use pressors in trauma!



Chris Hill is an emergency and prehospital care physician based in the United Kingdom

Utstein-like template for physician EMS

Many European and Australasian emergency medical services deploy physicians to the scene. In order to facilitate consistent data reporting and future collaborative research, a working group produced a recommended reporting template. The group consisted of ‘sixteen European experts in the field of pre-hospital care’, and the nine authors of the study were seven Scandinavians, one Italian and one Brit.

Prehospital Care Doctors
They established an Utstein-like template for documenting and reporting in physician-staffed pre-hospital services. The core data set consists of 45 variables grouped in five different categories: “fixed system variables”, “event operational descriptors”, ” patient descriptors”, “process mapping”, and “outcome measures and quality indicators”.

A consensus-based template for documenting and reporting in physician-staffed pre-hospital services
Andreas J Kruger, David Lockey, Jouni Kurola, Stefano Di Bartolomeo, Maaret Castren, Soren Mikkelsen, Hans Morten Lossius
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2011, 19:71 Full Text
Full text PDF

Make space for pre-hospital intubation

Control your environment – don’t let it control you” is a reliable adage for pre-hospital providers, and its adherence can assist in in-hospital resuscitation too. Commanding control of ones space is a skill demonstrated by more seasoned paramedics compared with novices and the requirement, where possible, for 360 degrees of access around a patient is included in some Standard Operating Procedures for pre-hospital rapid sequence intubation.

Brett Rosen MD controlling space in the field

Evidence for this approach is now further supported by a study demonstrating that limited surrounding space on scene was a significant risk factor for difficult pre-hospital intubation by European EMS physicians.

Other predisposing factors for difficult prehospital intubation included obesity and a short neck.

OBJECTIVES:For experienced personnel endotracheal intubation (ETI) is the gold standard to secure the airway in prehospital emergency medicine. Nevertheless, substantial procedural difficulties have been reported with a significant potential to compromise patients’ outcomes. Systematic evaluation of ETI in paramedic operated emergency medical systems (EMS) and in a mixed physician/anaesthetic nurse EMS showed divergent results. In our study we systematically assessed factors associated with difficult ETI in an EMS exclusively operating with physicians.

METHODS:Over a 1-year period we prospectively collected data on the specific conditions of all ETIs of two physician staffed EMS vehicles. Difficult ETI was defined by more than 3 attempts or a difficult visualisation of the larynx (Cormack and Lehane grade 3, or worse). For each patient ETI conditions, biophysical characteristics and factors of the surrounding scene were assessed. Additionally, physicians were asked whether they had expected difficult ETI in advance.

RESULTS:Out of 3979 treated patients 305 (7.7%) received ETI. For 276 patients complete data sets were available. The incidence of difficult ETI was 13.0%. In 4 cases (1.4%) ETI was impossible, but no patient was unable to be ventilated sufficiently. Predicting conditions for difficult intubation were limited surrounding space on scene (p<0.01), short neck (p<0.01), obesity (p<0.01), face and neck injuries (p<0.01), mouth opening<3cm (p<0.01) and known ankylosing spondylitis (p<0.01). ETI on the floor or with C-spine immobilisation in situ were of no significant influence. The incidence of unexpected difficult ETI was 5.0%.

CONCLUSIONS: In a physician staffed EMS difficult prehospital ETI occurred in 13% of cases. Predisposing factors were limited surrounding space on scene and certain biophysical conditions of the patient (short neck, obesity, face and neck injuries, and anatomical restrictions). Unexpected difficult ETI occurred in 5% of the cases.

Difficult prehospital endotracheal intubation – predisposing factors in a physician based EMS
Resuscitation. 2011 Dec;82(12):1519-24

Pre-hospital hypertonic saline during ACLS

A newly published study examines pre-hospital hypertonic saline during CPR. A randomised trial compared 7.2% hypertonic saline / hydroxyethyl starch with hydroxyethyl starch alone in over 200 adult patients with non-traumatic out-of-hospital cardiac arrest. The volume infused was 2 ml /kg over 10 mins. All patients were resuscitated by the physicians of the Emergency Medical System (EMS) in Bonn, Germany.

There were no differences in survival to admission or discharge. There was a barely statistically significant increase in those survivors with higher cerebral performance categories (1 or 2) in the hypertonic saline group, inviting further study. The study was conducted from 2001 to 2004 (according to the 2000 CPR-Guidelines), so took an interestingly long time to see print.

Randomised study of hypertonic saline infusion during resuscitation from out-of-hospital cardiac arrest
Resuscitation. 2011 Sep 19. [Epub ahead of print]

Aim of the study Animal models of hypertonic saline infusion during cardiopulmonary resuscitation (CPR) improve survival, as well as myocardial and cerebral perfusion during CPR. We studied the effect of hypertonic saline infusion during CPR (Guidelines 2000) on survival to hospital admission and hospital discharge, and neurological outcome on hospital discharge.

Methods The study was performed by the EMS of Bonn, Germany, with ethical committee approval. Study inclusion criteria were non-traumatic out-of-hospital cardiac arrest, aged 18–80 years, and given of adrenaline (epinephrine) during CPR. Patients were randomly infused 2 ml kg−1 HHS (7.2% NaCl with 6% hydroxyethyl starch 200,000/0.5 [HES]) or HES over 10 min.

Results 203 patients were randomised between May 2001 and June 2004. After HHS infusion, plasma sodium concentration increased significantly to 162 ± 36 mmol l−1 at 10 min after infusion and decreased to near normal (144 ± 6 mmol l−1) at hospital admission. Survival to hospital admission and hospital discharge was similar in both groups (50/100 HHS vs. 49/103 HES for hospital admission, 23/100 HHS vs. 22/103 HES for hospital discharge). There was a small improvement in neurological outcome in survivors on discharge (cerebral performance category 1 or 2) in the HHS group compared to the HES group (13/100 HHS vs. 5/100 HES, p < 0.05, odds-ratio 2.9, 95% confidence interval 1.004–8.5).

Conclusion Hypertonic saline infusion during CPR using Guidelines 2000 did not improve survival to hospital admission or hospital discharge. There was a small improvement with hypertonic saline in the secondary endpoint of neurological outcome on discharge in survivors. Further adequately powered studies using current guidelines are needed.

Pre-hospital CPAP for pulmonary oedema

The physician-staffed mobile intensive care units of SAMU (Service d’Aide Médicale Urgente) in France provided the location for this randomised controlled trial of CPAP for acute cardiogenic pulmonary oedema.

STUDY OBJECTIVE: The purpose of this randomized controlled trial was to determine the immediate and delayed effects of noninvasive ventilation for patients in acute cardiogenic pulmonary edema (ACPE) in addition to aggressive usual care in a medical prehospital setting.

METHODS: Out-of-hospital patients in severe ACPE were eligible for the study. Patients were randomized to receive either usual care, including conventional optimal treatment with furosemide, oxygen, and high-dose boluses of isosorbide dinitrate plus oxygen, or conventional medications plus out-of-hospital continuous positive airway pressure (CPAP). The primary outcome was the treatment success defined as all of respiratory rate less than 25 breaths per minute and oxygen saturation of greater than 90% at the end of 1-hour study. Secondary end points included death during 30 days after inclusion. Lengths of intensive care unit and hospital stays were also recorded.

RESULTS: In total, 124 patients were enrolled into the study. The 2 groups had similar baseline characteristics. For the primary outcome analysis, 22 (35.5%) of 62 patients were considered as experiencing a treatment success in the usual care group vs 19 (31.7%) of 60 in the CPAP group (P = .65). Seven patients died within 30 days in the usual care group vs 6 in the CPAP group (P = .52). There were no statistically significant differences between the treatment groups for length of stay either in hospital or in the intensive care unit.

CONCLUSION: In the prehospital setting, in spite of its potential advantages for patients in ACPE, CPAP may not be preferred to a strict optimal intravenous treatment.

Continuous positive airway pressure for cardiogenic pulmonary edema: a randomized study
Am J Emerg Med. 2011 Sep;29(7):775-81

Pre-hospital thoracotomy

The London Helicopter Emergency Medical Service provides a physician / paramedic team to victims of trauma. One of the interventions performed by their physicians is pre-hospital resuscitative thoracotomy to patients with cardiac arrest due to penetrating thoracic trauma. They have published the outcomes from this procedure over a 15 year period which show an 18% survival to discharge rate, with a high rate of neurologically intact survivors1.

The article was submitted for publication on February 1, 2010, and in the discussion mentions a further two survivors from the procedure performed after conducting the study. It is likely therefore in the year and a half since submission still more patients have been saved. It will be interesting to read future reports from this team as the numbers accumulate; penetrating trauma missions are sadly increasing in frequency.

Having worked for these guys and performed this procedure in the field a few times myself, I can attest to the training and governance surrounding this system. The technique of clamshell thoracotomy is well described 2 and one I would recommend for the non-surgeon.

BACKGROUND: Prehospital cardiac arrest associated with trauma almost always results in death. A case of survival after prehospital thoracotomy was published in 1994 and several others have followed. This article describes the result of prehospital thoracotomy in a physician-led system for patients with stab wounds to the chest who suffered cardiac arrest on scene.

METHODS: A 15-year retrospective prehospital trauma database review identified victims of stab wounds to the chest who suffered cardiac arrest on scene and had thoracotomy performed according to local standard operating procedures.

RESULTS: Overall, 71 patients met inclusion criteria. Thirteen patients (18%) survived to hospital discharge. Neurologic outcome was good in 11 patients and poor in 2. Presenting cardiac rhythm was asystole in four patients, pulseless electrical activity in five, and unrecorded in the remaining four. All survivors had cardiac tamponade. The medical team was present at the time of cardiac arrest for six survivors (good neurologic outcome): arrived in the first 5 minutes after arrest in three patients (all good neurologic outcome), arrived 5 minutes to 10 minutes after arrest in two patients (one poor neurologic outcome), and in one patient (poor neurologic outcome) the period was unknown. Of the survivors, seven thoracotomies were performed by emergency physicians and six by anesthesiologists.

CONCLUSIONS: Prehospital thoracotomy is a well-established procedure in this physician-led prehospital service. Results from this and other similar systems suggest that when performed for the subgroup of patients described, significant numbers of survivors with good neurologic outcome can be expected.

1. Thirteen Survivors of Prehospital Thoracotomy for Penetrating Trauma: A Prehospital Physician-Performed Resuscitation Procedure That Can Yield Good Results
J Trauma. 2011 May;70(5):E75-8

2. Emergency thoracotomy: “how to do it”
Emerg Med J. 2005 January; 22(1):22–24
Full text available here