Tag Archives: shock

Capillary refill time

A review of capillary refill time (CRT) reveals some interesting details about this test:

  • CRT is affected by age – the upper limit of normal for neonates is 3 seconds.
  • It increases with age – one study recommended the upper limit of normal for adult women should be increased to 2.9 seconds and for the elderly to 4.5 seconds.
  • It is affected by multiple external factors (especially ambient temperature).
  • Although it is claimed to have some predictive value in the assessment of dehydration and serious infection in children, studies vary in where and for how long pressure should be applied, and there is poor interobserver reliability.

The latest (5th Edition) of the Advanced Paediatric Life Support Manual states:
Poor capillary refill and differential pulse volumes are neither sensitive nor specific indicators of shock in infants and children, but are useful clinical signs when used in conjunction with the other signs described
In my view, it is best used as a monitor of trends (in accordance with skin temperature and other markers of perfusion), rather than by placing emphasis on the exact number of seconds of a single reading. See below for a video of my perfectly happy and healthy son demonstrating a CRT of over six seconds in a cool room during an English Summer’s day.
The authors of the review caution:
Operating rooms are cold, patients are often draped, which limits access, and because most anesthetics are potent vasodilators, the use of CRT to guide practice is not justified. The possibility of a false-positive or false-negative assessment is simply too great.


Capillary refill time (CRT) is widely used by health care workers as part of the rapid, structured cardiopulmonary assessment of critically ill patients. Measurement involves the visual inspection of blood returning to distal capillaries after they have been emptied by pressure. It is hypothesized that CRT is a simple measure of alterations in peripheral perfusion. Evidence for the use of CRT in anesthesia is lacking and further research is required, but understanding may be gained from evidence in other fields. In this report, we examine this evidence and factors affecting CRT measurement. Novel approaches to the assessment of CRT are under investigation. In the future, CRT measurement may be achieved using new technologies such as digital videography or modified oxygen saturation probes; these new methods would remove the limitations associated with clinical CRT measurement and may even be able to provide an automated CRT measurement.

Capillary Refill Time: Is It Still a Useful Clinical Sign?
Anesth Analg. 2011 Jul;113(1):120-3
The Capillary Refill Video

Why I don't give vasopressors in sepsis

It’s become popular to use the term ‘vasopressors’ or just ‘pressors’ when noradrenaline/norepinephrine or even (in some places still) dopamine are given. I have resisted this trend and continue to use the term ‘vasoactive’ drugs, on the basis that the effects they produce (and that we may desire) are not limited to a pure alpha adrenergic effect on vascular tone, but they have effects on heart rate and contractility too (as well as preload through venous effects). If you don’t believe me about noradrenaline/norepinephrine, then check out one of my favourite critical care papers of all time: the CAT study.
There are of course real pressors out there – phenylephrine acts on alpha receptors, as does methoxamine. Metaraminol predominantly acts on alpha receptors but does also cause some release of noradrenaline/norepinephrine.
Why is this important? All these drugs will fix hypotension, right? Yes, they should. However should blood pressure be our main treatment goal? What we’re really interested in is organ perfusion, which depends on regional blood flow to vital organs. It’s possible that a drug could fix the measured blood pressure and give a nice ‘macroscopic’ number, while at the same time reducing cardiac output and adversely affecting regional blood flow to organs through local vasoconstrictive effects. My view is that this is more likely with pure ‘pressors’ (like phenylephrine), which is why I avoid them in septic shock and opt for catecholamine infusions (noradrenaline/norepinephrine).
This is important in my practice setting of retrieval medicine, where, prior to interfacility transport, physicians might sometimes be tempted to ‘push pressors’ peripherally rather than insert a central venous catheter and commence a catecholamine infusion. While the former approach might be more expeditious and make the vital signs chart look pretty, one wonders about what effect this is having on tissue oxygen delivery.
A fascinating review of papers on pressor physiology1 suggests these agents have the following effects:

  • conflicting data on changes in myocardial perfusion
  • increase both left and right heart afterload
  • decrease venous compliance with the potential to increase venous return although the impact of this on cardiac output is controversial
  • controversial effect on cerebral bloodflow
  • decrease bloodflow to the kidneys
  • adverse affects on gastrointestinal tract bloodflow


abstract1
Phenylephrine and methoxamine are direct-acting, predominantly α(1) adrenergic receptor (AR) agonists. To better understand their physiologic effects, we screened 463 articles on the basis of PubMed searches of “methoxamine” and “phenylephrine” (limited to human, randomized studies published in English), as well as citations found therein. Relevant articles, as well as those discovered in the peer-review process, were incorporated into this review. Both methoxamine and phenylephrine increase cardiac afterload via several mechanisms, including increased vascular resistance, decreased vascular compliance, and disadvantageous alterations in the pressure waveforms produced by the pulsatile heart. Although pure α(1) agonists increase arterial blood pressure, neither animal nor human studies have ever shown pure α(1)-agonism to produce a favorable change in myocardial energetics because of the resultant increase in myocardial workload. Furthermore, the cost of increased blood pressure after pure α(1)-agonism is almost invariably decreased cardiac output, likely due to increases in venous resistance. The venous system contains α(1) ARs, and though stimulation of α(1) ARs decreases capacitance and may transiently increase venous return, this gain may be offset by changes in afterload, venous compliance, and venous resistance. Data on the effects of α(1) stimulation in the central nervous system show conflicting changes, while experimental animal data suggest that renal blood flow is reduced by α(1)-agonists, and both animal and human data suggest that gastrointestinal perfusion may be reduced by α(1) tone.

A review of clinical articles2 reveals few evidence-based indications for true pressors. Possible situations where they may be of benefit include intraoperative hypotension, aortic stenosis, during cyanotic episodes in Tetralogy of Fallot, and some obstetric situations. In the setting of sepis, phenylephrine has been compared with noradrenaline in which an initial pilot study found a statistically significant reduction in creatinine clearance and increase in arterial lactate after initiating the phenylephrine infusion. However a subsequent randomised controlled comparison of phenylephrine with noradrenaline/norepinephrine did not show differences in cardiopulmonary performance, global oxygen transport, or regional hemodynamics, although there were only 16 patients in each group3.


abstract2
Phenylephrine is a direct-acting, predominantly α(1) adrenergic receptor agonist used by anesthesiologists and intensivists to treat hypotension. A variety of physiologic studies suggest that α-agonists increase cardiac afterload, reduce venous compliance, and reduce renal bloodflow. The effects on gastrointestinal and cerebral perfusion are controversial. To better understand the effects of phenylephrine in a variety of clinical settings, we screened 463 articles on the basis of PubMed searches of “methoxamine,” a long-acting α agonist, and “phenylephrine” (limited to human, randomized studies published in English), as well as citations found therein. Relevant articles, as well as those discovered in the peer-review process, were incorporated into this review. Phenylephrine has been studied as an antihypotensive drug in patients with severe aortic stenosis, as a treatment for decompensated tetralogy of Fallot and hypoxemia during 1-lung ventilation, as well as for the treatment of septic shock, traumatic brain injury, vasospasm status-postsubarachnoid hemorrhage, and hypotension during cesarean delivery. In specific instances (critical aortic stenosis, tetralogy of Fallot, hypotension during cesarean delivery) in which the regional effects of phenylephrine (e.g., decreased heart rate, favorable alterations in Q(p):Q(s) ratio, improved fetal oxygen supply:demand ratio) outweigh its global effects (e.g., decreased cardiac output), phenylephrine may be a rational pharmacologic choice. In pathophysiologic states in which no regional advantages are gained by using an α(1) agonist, alternative vasopressors should be sought.

These review articles reinforce my own bias against the use of pure pressors in septic shock, although clearly more clinical research is needed. I am inclined to agree with the reviewers’ concluding statement:
…in all clinical settings, phenylephrine reduces cardiac output, and in most clinical settings has been shown to significantly increase LV afterload. Thus, only in instances in which its regional effects are thought to outweigh its global effects should phenylephrine be used for the treatment of hypotension.
1. The physiologic implications of isolated alpha(1) adrenergic stimulation
Anesth Analg. 2011 Aug;113(2):284-96
2. The clinical implications of isolated alpha(1) adrenergic stimulation
Anesth Analg. 2011 Aug;113(2):297-304
3. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial
Crit Care. 2008;12(6):R143
Full Text available here

Trauma mortality and systolic BP

Here’s some further evidence that a ‘lowish’ – as opposed to a low – systolic blood pressure is a reason to be vigilant in trauma. In this study, it was BP measurement in the ED (rather than pre-hospital) that was assessed:


Introduction: Non-invasive systolic blood pressure (SBP) measurement is often used in triaging trauma patients. Traditionally, SBP < 90 mmHg has represented the threshold for hypotension, but recent studies have suggested redefining hypotension as SBP < 110 mmHg. This study aims to examine the association of SBP with mortality in blunt trauma patients.
Methods: This is an analysis of prospectively recorded data from adult (≥16 years) blunt trauma patients. Included patients presented to hospitals belonging to the Trauma Audit and Research Network (TARN) between 2000 and 2009. The primary outcome was the association of SBP and mortality rates at 30 days. Multivariate logistic regression models were used to adjust for the influence of age, gender, Injury Severity Score (ISS) and Glasgow Coma Score (GCS) on mortality.

Results: 47,927 eligible patients presented to TARN hospitals during the study period. Sample demographics were: median age: 51.1 years (IQR=32.8–67.4); male 60% (n=28,694); median ISS 9 (IQR = 8–10); median GCS 15 (IQR = 15–15); and median SBP 135 mmHg (IQR = 120–152). We identified SBP < 110 mmHg as a cut off for hypotension, where a significant increase in mortality was observed. Mor- tality rates doubled at <100 mmHg, tripled at <90 mmHg and were 5- to 6-fold at <70 mmHg, irrespective of age.
Conclusion: We recommend triaging adult blunt trauma patients with a SBP < 110 mmHg to resuscitation areas within dedicated trauma units for close monitoring and appropriate management.

Systolic blood pressure below 110mmHg is associated with increased mortality in blunt major trauma patients: Multicentre cohort study
Resuscitation. 2011 Sep;82(9):1202-7

Nitric oxide for right ventricular cardiogenic shock

A case report describes a patient with right ventricular cardiogenic shock due to a dissected right coronary artery1. There was deterioration despite fluid, inotropic and intraaortic balloon pump therapy, followed by improvement with the introduction of inhaled nitric oxide (iNO) at 12 to 15 ppm (a selective pulmonary vasodilator), to the point where vasoactive medication was withdrawn. The cessation of iNO was associated with deterioration which resolved with its reintroduction. It was more gradually withdrawn and the patient made a good recovery.
The rationale for the use of iNO in patients with acute RV heart failure due to MI is afterload reduction without systemic hypotension.
It has been shown to improve haemodynamics in RV MI patients with cardiogenic shock in a previous case series2 (abstract below) in which its effects on pulmonary vasodilation are thought be beneficial. In RV MI with shock increased pulmonary vascular tone is postulated to result from the following mechanisms:

  • A low cardiac output results in a decreased mixed venous blood oxygen content, which enhances pulmonary artery vasoconstriction.
  • The intravenous infusion of alpha-adrenergic vasoconstrictors can contribute to pulmonary vasoconstriction.
  • Mechanical ventilation with positive end-expiratory pressure can increase the pulmonary vascular resistance through compression of the pulmonary vasculature.
  • Interstitial pulmonary edema, which may occur in some patients with coexisting LV dysfunction, can also cause pulmonary constriction

OBJECTIVES: We sought to determine whether or not inhaled nitric oxide (NO) could improve hemodynamic function in patients with right ventricular myocardial infarction (RVMI) and cardiogenic shock (CS).

BACKGROUND: Inhaled NO is a selective pulmonary vasodilator that can decrease right ventricular afterload.

METHODS: Thirteen patients (7 males and 6 females, age 65 +/- 3 years) presenting with electrocardiographic, echocardiographic, and hemodynamic evidence of acute inferior myocardial infarction associated with RVMI and CS were studied. After administration of supplemental oxygen (inspired oxygen fraction [F(i)O(2)] = 1.0), hemodynamic measurements were recorded before, during inhalation of NO (80 ppm at F(i)O(2) = 0.90) for 10 min, and 10 min after NO inhalation was discontinued (F(i)O(2) = 1.0).

RESULTS: Breathing NO decreased the mean right atrial pressure by 12 +/- 3%, mean pulmonary arterial pressure by 13 +/- 2%, and pulmonary vascular resistance by 36 +/- 8% (all p < 0.05). Nitric oxide inhalation increased the cardiac index by 24 +/- 11% and the stroke volume index by 23 +/- 12% (p < 0.05). The NO administration did not change systemic arterial or pulmonary capillary wedge pressures. Contrast echocardiography identified three patients with a patent foramen ovale and right-to-left shunt flow while breathing at F(i)O(2) = 1.0. Breathing NO decreased shunt flow by 56 +/- 5% (p < 0.05) and was associated with markedly improved systemic oxygen saturation.

CONCLUSIONS: Nitric oxide inhalation results in acute hemodynamic improvement when administered to patients with RVMI and CS.

1. Use of inhaled nitric oxide in the treatment of right ventricular myocardial infarction
Am J Emerg Med. 2011 May;29(4):473.e3-5
2. Hemodynamic effects of inhaled nitric oxide in right ventricular myocardial infarction and cardiogenic shock
J Am Coll Cardiol. 2004 Aug 18;44(4):793-8

Steroids for sepsis in kids

A small retrospective study suggests adrenal insufficiency is common in kids with septic shock, and that steroid administration in these children was associated with a decrease in vasoactive drug requirements.

INTRODUCTION: Adrenal insufficiency may be common in adults and children with vasopressor-resistant shock. We developed a protocolized approach to low-dose adrenocorticotropin testing and empirical low-dose glucocorticoid/mineralocorticoid supplementation in children with systemic inflammatory response syndrome and persistent hypotension following fluid resuscitation and vasopressor infusion.
HYPOTHESIS: We hypothesized that absolute and relative adrenal insufficiency was common in children with systemic inflammatory response syndrome requiring vasopressor support and that steroid administration would be associated with decreased vasopressor need.
METHODS: Retrospective review of pediatric patients with systemic inflammatory response syndrome and vasopressor-dependent shock receiving protocol-based adrenocorticotropin testing and low-dose steroid supplementation. The incidence of absolute and relative adrenal insufficiency was determined using several definitions. Vasopressor dose requirements were evaluated before, and following, initiation of corticosteroids.
RESULTS: Seventy-eight patients met inclusion criteria for systemic inflammatory response syndrome and shock; 40 had septic shock. Median age was 84 months (range, 0.5-295). By adrenocorticotropin testing, 44 (56%) had absolute adrenal insufficiency, 39 (50%) had relative adrenal insufficiency, and 69 (88%) had either form of adrenal insufficiency. Adrenal insufficiency incidence was significantly higher in children >2 yrs (p = .0209). Therapeutic interventions included median 80-mL/kg fluid resuscitation; 65% of patients required dopamine, 58% norepinephrine, and 49% dopamine plus norepinephrine. With steroid supplementation, median dopamine dose decreased from 10 to 4 μg/kg/min at 4 hrs (p = .0001), and median dose of norepinephrine decreased from 0.175 μg/kg/min to 0.05 μg/kg/min at 4 hrs (p = .039).
CONCLUSIONS: Absolute and relative adrenal insufficiency was prevalent in this cohort of children with systemic inflammatory response syndrome and vasopressor-dependent shock and increased with age. Introduction of steroids produced a significant reduction in vasopressor duration and dosage. Use of low-dose adrenocorticotropin testing may help further delineate populations who require steroid supplementation.

Incidence of adrenal insufficiency and impact of corticosteroid supplementation in critically ill children with systemic inflammatory syndrome and vasopressor-dependent shock
Crit Care Med. 2011 May;39(5):1145-50

Hypovolaemic shock and pre-hospital hypertonic saline

No benefit was shown in a trial of hypertonic saline (with or without dextran) versus 0.9% saline in patients with hemorrhagic shock, in a study that was terminated early. Compare this to a similar study on head injured patients without shock by the same investigators.

OBJECTIVE: To determine whether out-of-hospital administration of hypertonic fluids would improve survival after severe injury with hemorrhagic shock.
BACKGROUND: Hypertonic fluids have potential benefit in the resuscitation of severely injured patients because of rapid restoration of tissue perfusion, with a smaller volume, and modulation of the inflammatory response, to reduce subsequent organ injury.
METHODS: Multicenter, randomized, blinded clinical trial, May 2006 to August 2008, 114 emergency medical services agencies in North America within the Resuscitation Outcomes Consortium. Inclusion criteria: injured patients, age ≥ 15 years with hypovolemic shock (systolic blood pressure ≤ 70 mm Hg or systolic blood pressure 71-90 mm Hg with heart rate ≥ 108 beats per minute). Initial resuscitation fluid, 250 mL of either 7.5% saline per 6% dextran 70 (hypertonic saline/dextran, HSD), 7.5% saline (hypertonic saline, HS), or 0.9% saline (normal saline, NS) administered by out-of-hospital providers. Primary outcome was 28-day survival. On the recommendation of the data and safety monitoring board, the study was stopped early (23% of proposed sample size) for futility and potential safety concern.
RESULTS: A total of 853 treated patients were enrolled, among whom 62% were with blunt trauma, 38% with penetrating. There was no difference in 28-day survival-HSD: 74.5% (0.1; 95% confidence interval [CI], -7.5 to 7.8); HS: 73.0% (-1.4; 95% CI, -8.7-6.0); and NS: 74.4%, P = 0.91. There was a higher mortality for the postrandomization subgroup of patients who did not receive blood transfusions in the first 24 hours, who received hypertonic fluids compared to NS [28-day mortality-HSD: 10% (5.2; 95% CI, 0.4-10.1); HS: 12.2% (7.4; 95% CI, 2.5-12.2); and NS: 4.8%, P < 0.01].
CONCLUSION: Among injured patients with hypovolemic shock, initial resuscitation fluid treatment with either HS or HSD compared with NS, did not result in superior 28-day survival. However, interpretation of these findings is limited by the early stopping of the trial.

Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial
Ann Surg. 2011 Mar;253(3):431-41

Thrombolysis in submassive PE – still equipoise?

The AHA has produced a comprehensive guideline on venous thromboembolic disease. Here are some excerpts pertaining to resuscitation room decision making, particularly: ‘should I thrombolyse this patient?’

Definition for massive PE: Acute PE with sustained hypotension (systolic blood pressure <90 mm Hg for at least 15 minutes or requiring inotropic support, not due to a cause other than PE, such as arrhythmia, hypovolemia, sepsis, or left ventricular [LV] dysfunction), pulselessness, or persistent profound bradycardia (heart rate <40 bpm with signs or symptoms of shock).
Definition for submassive PE: Acute PE without systemic hypotension (systolic blood pressure ≥90 mm Hg) but with either RV dysfunction or myocardial necrosis.
RV dysfunction means the presence of at least 1 of the following:

  • RV dilation (apical 4-chamber RV diameter divided by LV diameter >0.9) or RV systolic dysfunction on echocardiography
  • RV dilation (4-chamber RV diameter divided by LV diameter >0.9) on CT
  • Elevation of BNP (>90 pg/mL)
  • Elevation of N-terminal pro-BNP (>500 pg/mL); or
  • Electrocardiographic changes (new complete or incomplete right bundle-branch block, anteroseptal ST elevation or depression, or anteroseptal T-wave inversion)

Myocardial necrosis is defined as either of the following:

  • Elevation of troponin I (>0.4 ng/mL) or
    Elevation of troponin T (>0.1 ng/mL)

Odds ratio for short-term mortality for RV dysfunction on echocardiography = 2.53 (95% CI 1.17 to 5.50).
Troponin elevations had an odds ratio for mortality of 5.90 (95% CI 2.68 to 12.95).
Definition for low risk PE: those with normal RV function and no elevations in biomarkers with short-term mortality rates approaching ≈ 1%

Recommendations for Initial Anticoagulation for Acute PE

  • Therapeutic anticoagulation with subcutaneous LMWH, intravenous or subcutaneous UFH with monitoring, unmonitored weight-based subcutaneous UFH, or subcutaneous fondaparinux should be given to patients with objectively confirmed PE and no contraindications to anticoagulation (Class I; Level of Evidence A).
  • Therapeutic anticoagulation during the diagnostic workup should be given to patients with intermediate or high clinical probability of PE and no contraindications to anticoagulation (Class I; Level of Evidence C).

 
Patients treated with a fibrinolytic agent have faster restoration of lung perfusion. At 24 hours, patients treated with heparin have no substantial improvement in pulmonary blood flow, whereas patients treated with adjunctive fibrinolysis manifest a 30% to 35% reduction in total perfusion defect. However, by 7 days, blood flow improves similarly (≈65% to 70% reduction in total defect).
Thirteen placebo-controlled randomized trials of fibrinolysis for acute PE have been published, but only a subset evaluated massive PE specifically.
When Wan et al restricted their analysis to those trials with massive PE, they identified a significant reduction in recurrent PE or death from 19.0% with heparin alone to 9.4% with fibrinolysis (odds ratio 0.45, 95% CI 0.22 to 0.90).
Data from registries indicate that the short-term mortality rate directly attributable to submassive PE treated with heparin anticoagulation is probably < 3.0%. The implication is that even if adjunctive fibrinolytic therapy has extremely high efficacy, for example, a 30% relative reduction in mortality, the effect size on mortality due to submassive PE is probably < 1%. Thus, secondary adverse outcomes such as persistent RV dysfunction, chronic thromboembolic pulmonary hypertension, and impaired quality of life represent appropriate surrogate goals of treatment.
Data suggest that compared with heparin alone, heparin plus fibrinolysis yields a significant favorable change in right ventricular systolic pressure and pulmonary arterial pressure incident between the time of diagnosis and follow-up. Patients with low-risk PE have an unfavorable risk-benefit ratio with fibrinolysis. Patients with PE that causes hypotension probably do benefit from fibrinolysis. Management of submassive PE crosses the zone of equipoise, requiring the clinician to use clinical judgment.

An algorithm is proposed:

Two criteria can be used to assist in determining whether a patient is more likely to benefit from fibrinolysis: (1) Evidence of present or developing circulatory or respiratory insufficiency; or (2) evidence of moderate to severe RV injury.
Evidence of circulatory failure includes any episode of hypotension or a persistent shock index (heart rate in beats per minute divided by systolic blood pressure in millimeters of mercury) >1
The definition of respiratory insufficiency may include hypoxemia, defined as a pulse oximetry reading < 95% when the patient is breathing room air and clinical judgment that the patient appears to be in respiratory distress. Alternatively, respiratory distress can be quantified by the numeric Borg score, which assesses the severity of dyspnea from 0 to 10 (0=no dyspnea and 10=sensation of choking to death).
Evidence of moderate to severe RV injury may be derived from Doppler echocardiography that demonstrates any degree of RV hypokinesis, McConnell’s sign (a distinct regional pattern of RV dysfunction with akinesis of the mid free wall but normal motion at the apex), interventricular septal shift or bowing, or an estimated RVSP > 40 mm Hg.
Biomarker evidence of moderate to severe RV injury includes major elevation of troponin measurement or brain natriuretic peptides.
Two trials are currently ongoing that aim to assess effect of thrombolysis on patients with submassive PE: PEITHO and TOPCOAT

Recommendations for Fibrinolysis for Acute PE

  • Fibrinolysis is reasonable for patients with massive acute PE and acceptable risk of bleeding complications (Class IIa; Level of Evidence B).
  • Fibrinolysis may be considered for patients with submassive acute PE judged to have clinical evidence of adverse prognosis (new hemodynamic instability, worsening respiratory insufficiency, severe RV dysfunction, or major myocardial necrosis) and low risk of bleeding complications (Class IIb; Level of Evidence C).
  • Fibrinolysis is not recommended for patients with low-risk PE (Class III; Level of Evidence B) or submassive acute PE with minor RV dysfunction, minor myocardial necrosis, and no clinical worsening (Class III; Level of Evidence B).
  • Fibrinolysis is not recommended for undifferentiated cardiac arrest (Class III; Level of Evidence B).

Recommendations for Catheter Embolectomy and Fragmentation

  • Depending on local expertise, either catheter embolectomy and fragmentation or surgical embolectomy is reasonable for patients with massive PE and contraindications to fibrinolysis (Class IIa; Level of Evidence C).
  • Catheter embolectomy and fragmentation or surgical embolectomy is reasonable for patients with massive PE who remain unstable after receiving fibrinolysis (Class IIa; Level of Evidence C).
  • For patients with massive PE who cannot receive fibrinolysis or who remain unstable after fibrinolysis, it is reasonable to consider transfer to an institution experienced in either catheter embolectomy or surgical embolectomy if these procedures are not available locally and safe transfer can be achieved (Class IIa; Level of Evidence C).
  • Either catheter embolectomy or surgical embolectomy may be considered for patients with submassive acute PE judged to have clinical evidence of adverse prognosis (new hemodynamic instability, worsening respiratory failure, severe RV dysfunction, or major myocardial necrosis) (Class IIb; Level of Evidence C).
  • Catheter embolectomy and surgical thrombectomy are not recommended for patients with low-risk PE or submassive acute PE with minor RV dysfunction, minor myocardial necrosis, and no clinical worsening (Class III; Level of Evidence C).

 
Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension
Circulation. 2011 Apr 26;123(16):1788-1830 (Free Full Text)

Vasoactive drugs in cardiogenic shock

I’m always on the look-out for evidence to guide vasoactive drug therapy, an area where much dogma is spouted by many who have not read the literature. Here’s a small (note: pilot) study comparing two strategies for cardiogenic shock. The higher heart rate and lactate with epinephrine (adrenaline) are consistent with the findings of the great CAT study; this is of interest, but not necessarily clinically significant nor practice changing.

OBJECTIVE: There is no study that has compared, in a randomized manner, which vasopressor is most suitable in optimizing both systemic and regional hemodynamics in cardiogenic shock patients. Hence, the present study was designed to compare epinephrine and norepinephrine-dobutamine in dopamine-resistant cardiogenic shock.
DESIGN: Open, randomized interventional human study.
SETTING: Medical intensive care unit in a university hospital.
PATIENTS: Thirty patients with a cardiac index of <2.2 L/min/m and a mean arterial pressure of <60 mm Hg resistant to combined dopamine-dobutamine treatment and signs of shock. Patients were not included in cases of cardiogenic shock secondary to acute ischemic events such as myocardial infarction. Noninclusion criteria also included immediate indication of mechanical assistance.
INTERVENTIONS: Patients were randomized to receive an infusion of either norepinephrine-dobutamine or epinephrine titrated to obtain a mean arterial pressure of between 65 and 70 mm Hg with a stable or increased cardiac index.
MAIN RESULTS: Both regimens increased cardiac index and oxygen-derived parameters in a similar manner. Patients in the norepinephrine-dobutamine group demonstrated heart rates lower (p<.05) than those in the epinephrine group. Epinephrine infusion was associated with new arrhythmias in three patients. When compared to baseline values, after 6 hrs, epinephrine infusion was associated with an increase in lactate level (p<.01), whereas this level decreased in the norepinephrine-dobutamine group. Tonometered PCO2 gap, a surrogate for splanchnic perfusion adequacy, increased in the epinephrine-treated group (p<.01) while decreasing in the norepinephrine group (p<.01). Diuresis increased in both groups but significantly more so in the norepinephrine-dobutamine group, whereas plasma creatinine decreased in both groups.
CONCLUSIONS: When considering global hemodynamic effects, epinephrine is as effective as norepinephrine-dobutamine. Nevertheless, epinephrine is associated with a transient lactic acidosis, higher heart rate and arrhythmia, and inadequate gastric mucosa perfusion. Thus, the combination norepinephrine-dobutamine appears to be a more reliable and safer strategy.

Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study
Crit Care Med. 2011 Mar;39(3):450-5

CHEST study to evaluate starch

No results to report here, just a heads up that the CHEST study is underway: a randomised controlled trial of 7000 patients comparing of 6% hydroxyethyl starch (130/0.4) with 0.9% sodium chloride for all fluid resuscitation needs whilst in the intensive care unit (ICU).  This is how the authors explain the rationale for the study:

Much of the evidence currently available to inform clinicians on the efficacy and safety of starch solutions for fluid resuscitation involves studies conducted using older, high molecular weight and high molar substitution starches. Meta-analyses of these studies suggest that when comparing starches to other fluids, the relative risk of mortality ranges from 1.00 (95% CI 0.80–1.25) to 1.35 (95% CI 0.94–1.95) and for kidney failure 1.50 (95% CI 1.20–1.87). There are insufficient data, however, on the newer low molecular weight, low molar substitution starches. To date, most published studies on these newer generation starches have been conducted in perioperative settings with small sample sizes and limited follow-up. They have been designed to examine surrogate outcomes and not important patient outcomes such as mortality or renal failure.

It is possible to overdo the starch

 
These are some of the same people who brought us the SAFE study on albumin and the NICE-SUGAR study on glycaemic control, so this will be one to watch. It is anticipated that recruitment will be completed by December 2011.

PURPOSE: The intravenous fluid 6% hydroxyethyl starch (130/0.4) (6% HES 130/0.4) is used widely for resuscitation but there is limited information on its efficacy and safety. A large-scale multi-centre randomised controlled trial (CHEST) in critically ill patients is currently underway comparing fluid resuscitation with 6% HES 130/0.4 to 0.9% sodium chloride on 90-day mortality and other clinically relevant outcomes including renal injury. This report describes the study protocol.
METHODS: CHEST will recruit 7,000 patients to concealed, random, parallel assignment of either 6% HES 130/0.4 or 0.9% sodium chloride for all fluid resuscitation needs whilst in the intensive care unit (ICU). The primary outcome will be all-cause mortality at 90 days post-randomisation. Secondary outcomes will include incident renal injury, other organ failures, ICU and hospital mortality, length of ICU stay, quality of life at 6 months, health economic analyses and in patients with traumatic brain injury, functional outcome. Subgroup analyses will be conducted in four predefined subgroups. All analyses will be conducted on an intention-to-treat basis.
RESULTS AND CONCLUSIONS: The study run-in phase has been completed and the main trial commenced in April 2010. CHEST should generate results that will inform and influence prescribing of this commonly used resuscitation fluid.

The Crystalloid versus Hydroxyethyl Starch Trial: protocol for a multi-centre randomised controlled trial of fluid resuscitation with 6% hydroxyethyl starch (130/0.4) compared to 0.9% sodium chloride (saline) in intensive care patients on mortality
Intensive Care Med. 2011 May;37(5):816-823

Norepinephrine increases preload

Noradrenaline (norepinephrine) may improve blood pressure in part through its venoconstriction effects, providing more venous return to the heart which increases cardiac output. A study of septic shock patients supports this.
An accompanying editorial by Drs Milzman and Napoli comments: “This study tells us something we probably already knew, that norepinephrine (NE) has the ability to provide venoconstriction, increase central venous pressure, provide a marginal increase in cardiac output, and improve the MAP in patients with septic shock. Importantly, it also demonstrates that Passive Leg Raise (PLR) continues to be a good predictor of preload responsiveness even in the presence of low doses of NE.”

OBJECTIVE: To assess the effects of norepinephrine on cardiac preload, cardiac index, and preload dependency during septic shock.
DESIGN: Prospective interventional study.
SETTING: Medical Intensive Care Unit.
PATIENTS: We included 25 septic shock patients (62 ± 13 yrs old, Simplified Acute Physiology Score II 53 ± 12, lactate 3.5 ± 2.1 mmol/L, all receiving norepinephrine at baseline at 0.24 [25%-75% interquartile range: 0.12-0.48] μg/kg/min) with a positive passive leg raising test (defined by an increase in cardiac index ≥10%) and a diastolic arterial pressure ≤40 mm Hg.
INTERVENTIONS: We performed a passive leg raising test (during 1 min) at baseline. Immediately after, we increased the dose of norepinephrine (to 0.48 [0.36-0.71] μg/kg/min) and, when the hemodynamic status was stabilized, we performed a second passive leg raising test (during 1 min). We finally infused 500 mL saline.
MEASUREMENTS AND MAIN RESULTS: Increasing the dose of norepinephrine significantly increased central venous pressure (+23% ± 12%), left ventricular end-diastolic area (+9% ± 6%), E mitral wave (+19% ± 23%), and global end-diastolic volume (+9% ± 6%). Simultaneously, cardiac index significantly increased by 11% ± 7%, suggesting that norepinephrine had recruited some cardiac preload reserve. The second passive leg raising test increased cardiac index to a lesser extent than the baseline test (13% ± 8% vs. + 19% ± 6%, p < .05), suggesting that norepinephrine had decreased the degree of preload dependency. Volume infusion significantly increased cardiac index by 26% ± 15%. However, cardiac index increased by <15% in four patients (fluid unresponsive patients) while the baseline passive leg raising test was positive in these patients. In three of these four patients, the second passive leg raising test was also negative, i.e., the second passive leg raising test (after norepinephrine increase) predicted fluid responsiveness with a sensitivity of 95 [76-99]% and a specificity of 100 [30-100]%.
CONCLUSIONS: In septic patients with a positive passive leg raising test at baseline suggesting the presence of preload dependency, norepinephrine increased cardiac preload and cardiac index and reduced the degree of preload dependency.

Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients
Crit Care Med 2011;39(4):689-94