Thoracic electrical bioimpedance in dyspnoea

Thoracic electrical bioimpedance (TEB) was used in ED patients presenting with dyspnoea to differentiate between cardiac and non-cardiac causes.
The fundamental principle behind TEB is based on Ohm’s law. If a constant electrical current is applied to the thorax, changes in impedance (ΔZ) to flow are equal to changes in voltage drop across the circuit. As a current will always seek the path of lowest resistivity, which in the human body is blood, ΔZ of the thorax will primarily reflect the dynamic changes of blood volume in the thoracic aorta. Changes in thoracic electrical impedance are continuously recorded and processed using a computer algorithm to calculate a number of cardiohaemodynamic parameters such as stroke volume, CO, CI, SVR and systemic vascular resistance index (SVRi).

A cardiac index cut-off of 3.2 l/m/m2 had a 86.7% sensitive (95% CI 59.5% to 98.0%) and 88.9% specific (95% CI 73.9% to 96.8%) for cardiac dyspnoea in the 52 patients studies, of which 15 had cardiac-related dyspnoea.
The study has several limitations including small numbers and using the gold standard of discharge diagnosis.
Thoracic electrical bioimpedance: a tool to determine cardiac versus non-cardiac causes of acute dyspnoea in the emergency department
Emerg Med J. 2010 May;27(5):359-63
Free Full Text