Tension pneumo treatment and chest wall thickness

An interesting ultrasound-based study challenges the assertion that a significant proportion of adults have a chest wall that is too thick for a standard iv cannula to reach the pleural space when attempting to decompress a tension pneumothorax. Perhaps there are other factors that make this technique so frequently ineffective.
The authors postulate that ultrasound measurements of chest wall thickness might be less than those obtained by CT scan due to the downward pressure on the tissues caused when the ultrasound transducer is placed on the chest, something that may also occur when a cannula is being pushed in, but would not be maintained after insertion of a cannula, perhaps leading to subsequent misplacement as the tissues recoil.
My view is that needle decompression might buy you time as a holding measure, but the patient with a tension pneumothorax will need a thoracostomy sooner rather than later.

Objective: Computed tomography measurements of chest wall thickness (CWT) suggest that standard- length angiocatheters (4.5 cm) may fail to decompress tension pneumothoraces. We used an alternative modality, ultrasound, to measure CWT. We correlated CWT with body mass index (BMI) and used national data to estimate the percentage of patients with CWT greater than 4.5 cm.

Methods: This was an observational, cross-sectional study of a convenience sample. We recorded standing height, weight, and sex. We measured CWT with ultrasound at the second intercostal space, midclavicular line and at the fourth intercostal space, midaxillary line on supine subjects. We correlated BMI (weight [in kilograms]/height2 [in square meters]) with CWT using linear regression. 95% Confidence intervals (CIs) assessed statistical significance. National Health and Nutrition Examination Survey results for 2007-2008 were combined to estimate national BMI adult measurements.

Results: Of 51 subjects, 33 (65%) were male and 18 (35%) were female. Mean anterior CWT (male, 2.1 cm; CI, 1.9-2.3; female, 2.3 cm; CI, 1.7-2.7), lateral CWT (male, 2.4 cm; CI, 2.1-2.6; female, 2.5 cm; CI 2.0-2.9), and BMI (male, 27.7; CI, 26.1-29.3; female, 30.0; CI, 25.8-34.2) did not differ by sex. Lateral CWT was greater than anterior CWT (0.2 cm; CI, 0.1-0.4; P <.01). Only one subject with a BMI of 48.2 had a CWT that exceeded 4.5 cm. Using national BMI estimates, less than 1% of the US population would be expected to have CWT greater than 4.5 cm.
Conclusions: Ultrasound measurements suggest that most patients will have CWT less than 4.5 cm and that CWT may not be the source of the high failure rate of needle decompression in tension pneumothorax.

Ultrasound determination of chest wall thickness: implications for needle thoracostomy

Am J Emerg Med. 2011 Nov;29(9):1173-7

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.