Needle crike: low rate and allow exhalation

Two dedicated devices for transtracheal oxygen delivery through a cricothyroidotomy needle are available, the ENK Oxygen Flow Modulator (ENK) and the Manujet. Both maintain oxygenation, but the ENK is thought to achieve better ventilation (as previously shown in a pig model) because of a continuous flow that provides CO2 washout between insufflations. Very little is known concerning the lung pressures generated with these 2 devices, so a study using a simulated trachea and artificial lung model sought to determine oxygen flow, tidal volumes, and airway pressures at different occlusion rates and during both simulated partial and complete upper airway obstruction.


Gas flow and tidal volume were 3 times greater with the Manujet than the ENK (approximately 37 vs 14 L/min and 700 vs 250 mL, respectively) and were not dependent on the respiratory rate. In the absence of ventilation, the ENK delivered a 0.6+/-0.1 L/min constant gas flow. In the totally occluded airway, lung pressures increased to 136 cm H2O after 3 insufflations with the Manujet, whereas the ENK, which has a pressure release vent, generated acceptable pressures at a low respiratory rate (4 breaths/min) (peak pressure at 27.7 +/-0.7 and end-expiratory pressure at 18.8+/- 3.8 cm H2O). When used at a respiratory rate of 12 breaths/min, the ENK generated higher pressures (peak pressure at 95.9 +/- 21.2 and end-expiratory pressure at 51.4+/- 21.4 cm H2O). In the partially occluded airway, lung pressures were significantly greater with the Manujet compared with the ENK, and pressures increased with the respiratory rate with both devices. Finally, the gas flow and tidal volume generated by the Manujet varied proportionally with the driving pressure.
The authors asset that this study confirms:

  • the absolute necessity of allowing gas exhalation between 2 insufflations and
  • maintaining low respiratory rates during transtracheal oxygenation.

In the case of total airway obstruction, the ENK may be less deleterious because it has a pressure release vent. Using a Manujet at lower driving pressures may decrease the risk of barotrauma and allow the safe use of higher respiratory rates


Oxygen delivery during transtracheal oxygenation: a comparison of two manual devices
Anesth Analg. 2010 Oct;111(4):922-4

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.