Three hand-ventilation systems were used in a simulated adult resuscitation to determine the delivered volumes. The mean minute ventilation delivered by each of the three devices investigated was significantly different, with the paediatric (500-ml) self-inflating bag producing the result most consistent with the guideline.
There is a discrepancy between resuscitation teaching and witnessed clinical practice. Furthermore, deleterious outcomes are associated with hyperventilation. We therefore conducted a manikin-based study of a simulated cardiac arrest to evaluate the ability of three ventilating devices to provide guideline-consistent ventilation. Mean (SD) minute ventilation was reduced with the paediatric self-inflating bag (7.0 (3.2) l.min(-1) ) compared with the Mapleson C system (9.8 (3.5) l.min(-1) ) and adult self-inflating bag (9.7 (4.2) l.min(-1) ; p = 0.003). Tidal volume was also lower with the paediatric self-inflating bag (391 (52) ml) compared with the others (582 (87) ml and 625 (103) ml, respectively; p < 0.001), as was peak airway pressure (14.5 (5.2) cmH(2) O vs 20.7 (9.0) cmH(2) O and 30.3 (11.4) cmH(2) O, respectively; p < 0.001). Participants hyperventilated patients' lungs in simulated cardiac arrest with all three devices. The paediatric self-inflating bag delivered the most guideline-consistent ventilation. Its use in adult cardiopulmonary resuscitation may ensure delivery of more guideline-consistent ventilation in patients with tracheal intubation.
Comparison of the Mapleson C system and adult and paediatric self-inflating bags for delivering guideline-consistent ventilation during simulated adult cardiopulmonary resuscitation
Anaesthesia. 2011 Jul;66(7):563-7