High flow nasal cannula oxygen

Where I work high flow humidified nasal cannula oxygen (HFNC) is used for infants with bronchiolitis and our ICU also employs it for selected adult patients. This is a relatively recent addition to our choice of oxygen delivery systems, and many emergency physicians may still be unfamiliar with it.
A recent review outlines the (scant) evidence for its use in neonates, infants, and adults, and proposes some mechanisms for its effect.
It’s a bit like the traditional delivery of oxygen via nasal cannulae. However, it is recommended that flow rates above 6 l/min are heated and humidified, so the review referred to heated, humidified, high flow nasal cannulae (HFNC).
HFNC began as an alternative to nasal CPAP for premature infants. There are as yet no definitive studies showing its superiority over CPAP.
HFNC may decrease the need for intubation when compared to standard nasal cannula in infants with bronchiolitis.
No hard outcome data yet exist. It has mainly been used for hypoxemic respiratory failure rather than patients with hypercarbia such as COPD patients.
How it works
The following are proposed mechanisms for improvements in gas exchange / oxygenation:

1. A high FiO2 is maintained because flow rates are higher than spontaneous inspiratory demand, compared with standard facemasks and low flow nasal cannulae which entrain a significant amount of room air.

2. Nasopharyngeal dead space ‘washout’. The additional gas flow within the nasopharyngeal space may  reduce dead space: tidal volume ratio. There are some animal neonatal data to show improved CO2 clearance with flows up to 8 l/min.

3. Stenting of the upper airway by positive pressure may decrease upper airways resistance and reduce work of breathing.

4. Some positive pressure (akin to CPAP) may be generated, which can help recruit lung and decrease ventilation–perfusion mismatch; however this is not consistently present in all studies, and high flows are needed to generate even modest pressures. For example, in a study on postoperative cardiac surgery patients, HFNC at 35 l/min generated a nasopharyngeal pressure of only 2.7 ± 1 cmH2O.

Drawbacks and things to know

Studies suggest that if benefit is going to be seen in adult or paediatric patients, this should be evident in the first 30-60 minutes.

Any modest positive pressure generated will be reduced by an open mouth or when there is a significant leak between the cannulae and the nares.

HFNC maintain a fixed flow and generate variable pressures, and the pressures may be more inconsistent in patients with respiratory distress with high respiratory rates and mouth breathing. Compare this with non-invasive ventilation (CPAP and or BiPAP) in which variable flow is used to generate a fixed pressure.

The authors’ summary is helpful:

We postulate that the predominant benefit of HFNC is the ability to match the inspiratory demands of the distressed patient while washing out the nasopharyngeal dead space. Generation of positive airway pressure is dependent on the absence of significant leak around the nares and mouth and seems less likely to be a predominant factor in relieving respiratory distress for most patients.

NIV such as CPAP and bilevel positive airway pressure should still be considered first line therapy in moderately distressed patients in whom supplementation oxygen is insufficient and when a consistent positive pressure is indicated.

There are numerous ongoing trials which should hopefully clarify indications for HFNC and the mechanisms by which it may be beneficial.

An earlier summary of the evidence was written by my Scandinavian chums. And Reuben Strayer uses it to optimise oxygenation during RSI as a modification of the NODESAT technique.
Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature
Intensive Care Med. 2013 Feb;39(2):247-57
[EXPAND Abstract]

BACKGROUND: High flow nasal cannula (HFNC) systems utilize higher gas flow rates than standard nasal cannulae. The use of HFNC as a respiratory support modality is increasing in the infant, pediatric, and adult populations as an alternative to non-invasive positive pressure ventilation.
OBJECTIVES: This critical review aims to: (1) appraise available evidence with regard to the utility of HFNC in neonatal, pediatric, and adult patients; (2) review the physiology of HFNC; (3) describe available HFNC systems (online supplement); and (4) review ongoing and planned trials studying the utility of HFNC in various clinical settings.
RESULTS: Clinical neonatal studies are limited to premature infants. Only a few pediatric studies have examined the use of HFNC, with most focusing on this modality for viral bronchiolitis. In critically ill adults, most studies have focused on acute respiratory parameters and short-term physiologic outcomes with limited investigations focusing on clinical outcomes such as duration of therapy and need for escalation of ventilatory support. Current evidence demonstrates that HFNC generates positive airway pressure in most circumstances; however, the predominant mechanism of action in relieving respiratory distress is not well established.
CONCLUSION: Current evidence suggests that HFNC is well tolerated and may be feasible in a subset of patients who require ventilatory support with non-invasive ventilation. However, HFNC has not been demonstrated to be equivalent or superior to non-invasive positive pressure ventilation, and further studies are needed to identify clinical indications for HFNC in patients with moderate to severe respiratory distress.


Lateral chest thrusts for choking

An interesting animal study examined the techniques recommended in basic choking management algorithms for foreign body airway obstruction (chest and abdominal thrusts). In terms of the pressures generated, lateral chest thrusts were the most effective, although they are not recommended in current guidelines.
The technique described (on intubated pigs) was:

The animals were placed on the floor and on their side. The lower (dependent) side of the chest was braced by the ground and thrust was applied to the upper part of the upper side by two hands side by side with the higher one just below the axilla.

Interestingly – and I didn’t know this (although perhaps should have!) – the Australian Resuscitation Council (ARC) recommended lateral chest thrusts instead of abdominal thrusts for over 20 years.
While we should always exercise extreme caution in extrapolating animal studies to humans, this makes me want to consider lateral thrusts in the first aid (ie. no equipment) situation if other measures are failing.
Lateral versus anterior thoracic thrusts in the generation of airway pressure in anaesthetised pigs
Resuscitation. 2013 Apr;84(4):515-9
[EXPAND Abstract]

Objective Anterior chest thrusts (with the subject sitting or standing and thrusts applied to the lower sternum) are recommended by the Australian Resuscitation Council as part of the sequence for clearing upper airway obstruction by a foreign body. Lateral chest thrusts (with the victim lying on their side) are no longer recommended due to a lack of evidence. We compared anterior, lateral chest and abdominal thrusts in the generation of airway pressures using a suitable animal model.

Methods This was a repeated-measures, cross-over, clinical trial of eight anaesthetised, intubated, adult pigs. For each animal, ten trials of each technique were undertaken with the upper airway obstructed. A chest/abdominal pressure transducer, a pneumotachograph and an intra-oesophageal balloon catheter recorded chest/abdominal thrust, expiratory air flows, airway and intrapleural pressures, respectively.

Results The mean (SD) thrust pressures generated for the anterior, lateral and abdominal techniques were 120.9 (11.0), 135.2 (20.0), and 142.4 (27.3) cmH2O, respectively (p < 0.0001). The mean (SD) peak expiratory airway pressures were 6.5 (3.0), 18.0 (5.5) and 13.8 (6.7) cmH2O, respectively (p < 0.0001). The mean (SD) peak expiratory intrapleural pressures were 5.4 (2.7), 13.5 (6.2) and 10.3 (8.5) cmH2O, respectively (p < 0.0001). At autopsy, no rib, intra-abdominal or intra-thoracic injury was observed.
Conclusion Lateral chest and abdominal thrust techniques generated significantly greater airway and pleural pressures than the anterior thrust technique. We recommend further research to provide additional evidence that may inform management guidelines for clearing foreign body upper airway obstruction.


Save a life by watching telly?

BB2.055If you’re in the United Kingdom on Thursday 21st March please consider watching BBC’s Horizon program at 9pm on BBC2.
I’m in Australia so I’ll miss it, but I’m moved by the whole background to this endeavour and really want you to help me spread the word.
Many of you will be familiar with the tragic case of Mrs Elaine Bromiley, who died from hypoxic brain injury after clinicians lost control of her airway during an anaesthetic for elective surgery. Her husband Martin has heroically campaigned for a greater awareness of the need to understand human factors in healthcare so such disasters can be prevented in the future.
Mr Bromiley describes the program, which is hosted by intensivist and space medicine expert Dr Kevin Fong:

Kevin and the Horizon team have produced something inspirational yet scientific, and – just as importantly – it’s by a clinician, for clinicians. It’s written in a way that will appeal to both those in healthcare and the public. It uses a tragic death to highlight human factors that all of us are prone to, and looks at how we can learn from others both in and outside healthcare to make a real difference in the future.

The lessons of this programme are for everyone in healthcare.

It would be wonderful if you could pass on details of the programme to anyone you know who works in healthcare. My goal is that by the end of this week, every one of the 1 million or so people who work in healthcare in the UK will be able to watch it (whether on Thursday or on iPlayer).

From the Health Foundation blog

Please help us reach this 1000 000 viewer target by watching on Thursday or later on iPlayer. Tweet about it or forward this message to as many healthcare providers you know. Help Martin help the rest of us avoid the kind of tragedy that he and his children have so bravely endured.
For more information on Mrs Bromiley’s case, watch ‘Just a Routine Operation’: