Sydney HEMS physician Dr Brian Burns talks about the prehospital care of trauma in this 20 minute audio podcast recorded at SMACC 2013
Further talks from the SMACC conference are available for free download on iTunes.
Here are the accompanying slides:
Tag Archives: air medical
Delayed door-to-balloon even with helicopters
For a whole bunch of reasons, patients with ST-elevation myocardial infarction who undergo interhospital transfer for primary percutaneous coronary intervention may not meet the required 90 minute door-to-balloon time. In a new study of patients transferred by helicopter, only 3% of STEMI patients transferred for reperfusion met the 90-minute goal. Should this result in an increase in the use of fibrinolysis at non–percutaneous coronary intervention hospitals?
STUDY OBJECTIVE: Early reperfusion portends better outcomes for ST-segment elevation myocardial infarction (STEMI) patients. This investigation estimates the proportions of STEMI patients transported by a hospital-based helicopter emergency medical services (EMS) system who meet the goals of 90-minute door-to-balloon time for percutaneous coronary intervention or 30-minute door-to-needle time for fibrinolysis.
METHODS: This was a multicenter, retrospective chart review of STEMI patients flown by a hospital-based helicopter service in 2007. Included patients were transferred from an emergency department (ED) to a cardiac catheterization laboratory for primary or rescue percutaneous coronary intervention. Out-of-hospital, ED, and inpatient records were reviewed to determine door-to-balloon time and door-to-needle time. Data were abstracted with a priori definitions and criteria.
RESULTS: There were 179 subjects from 16 referring and 6 receiving hospitals. Mean age was 58 years, 68% were men, and 86% were white. One hundred forty subjects were transferred for primary percutaneous coronary intervention, of whom 29 had no intervention during catheterization. For subjects with intervention, door-to-balloon time exceeded 90 minutes in 107 of 111 cases (97%). Median door-to-balloon time was 131 minutes (interquartile range 114 to 158 minutes). Thirty-nine subjects (21%) received fibrinolytics before transfer, and 19 of 39 (49%) received fibrinolytics within 30 minutes. Median door-to-needle time was 31 minutes (interquartile range 23 to 45 minutes).
CONCLUSION: In this study, STEMI patients presenting to non-percutaneous coronary intervention facilities who are transferred to a percutaneous coronary intervention-capable hospital by helicopter EMS do not commonly receive fibrinolysis and rarely achieve percutaneous coronary intervention within 90 minutes. In similar settings, primary fibrinolysis should be considered while strategies to reduce the time required for subsequent interventional care are explored.
Reperfusion Is Delayed Beyond Guideline Recommendations in Patients Requiring Interhospital Helicopter Transfer for Treatment of ST-segment Elevation Myocardial Infarction.
Ann Emerg Med. 2011 Mar;57(3):213-220
Pre-hospital / HEMS podcast
I was lucky enough to be interviewed by the amazing Scott Weingart, an emergency medicine intensivist who runs the spectacular EMcrit podcast. We covered some stuff on pre-hospital airway management, physicians in pre-hospital care, and I had a rant about ‘scoop and run’ versus ‘stay and play’. Worryingly, Scott is keeping back some audio footage for a later podcast, probably containing an even bigger rant about things like ATLS.
Click the image to be taken to the EMcrit site where you can listen to the podcast.
Helicopters between hospitals
More National Trauma Databank analysis coming out in favour of helicopter transport: this time looking at interhospital transfer:
Background: Helicopter transport (HT) is frequently used for interfacility transfer of injured patients to a trauma center. The benefits of HT over ground transport (GT) in this setting are unclear. By using a national sample, the objective of this study was to assess whether HT impacted outcomes following interfacility transfer of trauma patients.
Methods: Patients transferred by HT or GT in 2007 were identified using the National Trauma Databank (version 8). Injury severity, resource utilization, and survival to discharge were compared. Stepwise logistic regression was used to determine whether transport modality was a predictor of survival after adjusting for covariates. Regression analysis was repeated in subgroups with Injury Severity Score (ISS) ≤15 and ISS >15.
Results: There were 74,779 patients transported by helicopter (20%) or ground (80%). Mean ISS was higher in patients transported by helicopter (17 ± 11 vs. 12 ± 9; p < 0.01) as was the proportion with ISS >15 (49% vs. 28%; odds ratio [OR], 2.53; 95% confidence interval [CI], 2.43-2.63). Patients transported by helicopter had higher rates of intensive care unit admission (54% vs. 29%; OR, 2.86; 95% CI, 2.75-2.96), had shorter transport time (61 ± 55 minutes vs. 98 ± 71 minutes; p < 0.01), and had shorter overall prehospital time (135 ± 86 minutes vs. 202 ± 132 minutes; p < 0.01). HT was not a predictor of survival overall or in patients with ISS ≤15. In patients with ISS >15, HT was a predictor of survival (OR, 1.09; 95% CI, 1.02-1.17; p = 0.01).
Conclusions: Patients transported by helicopter were more severely injured and required more hospital resources than patients transported by ground. HT offered shorter transport and overall prehospital times. For patients with ISS >15, HT was a predictor of survival. These findings should be considered when developing interfacility transfer policies for patients with severe injuries.
Helicopters Improve Survival in Seriously Injured Patients Requiring Interfacility Transfer for Definitive Care
J Trauma. 2011 Feb;70(2):310-4.
Flying Docs and Airways
Flying Doctor Minh Le Cong describes the profile and success rates of emergency endotracheal intubation conducted by the Queensland Royal Flying Doctor Service aeromedical retrieval team, comprising a doctor and flight nurse. It would be interesting to know how many more patients have been added to the registry since this was submitted. An important contribution to the literature in retrieval medicine.
Objective To describe the profile and success rates of emergency endotracheal intubation conducted by the Queensland Royal Flying Doctor Service aeromedical retrieval team comprising a doctor and flight nurse.
Method Each intubator completed a study questionnaire at the time of each intubation for indications, complications, overall success, drugs utilised and deployment of rescue airway devices/adjuncts.
Results 76 patients were intubated; 72 intubations were successful. None required surgical airway and three were managed with laryngeal mask airways; the remaining failure was managed with simple airway positioning for transport. There were two cardiac arrests during intubation. Thiopentone and suxamethonium were the predominant drugs used to facilitate intubation.
Conclusion Despite a low rate of endotracheal intubation, the high success rate was similar to other aeromedical organisations’ published airway data. This study demonstrates the utility of the laryngeal mask airway device in the retrieval and transport setting, in particular for managing a failed intubation.
Flying doctor emergency airway registry: a 3-year, prospective, observational study of endotracheal intubation by the Queensland Section of the Royal Flying Doctor Service of Australia
Emerg Med J. 2010 Sep 15. [Epub ahead of print]
Those interested in learning more about this registry, including how often capnography was used, more information about the asystolic arrests, and whether they tried a blind digital intubation, can check this link to a presentation about the registry.
Tracheal tube cuff pressure in flight
Tracheal tube cuff pressures increased from a mean 28.7 cm H2O pre-flight to 62.6 cm H2O in flight (mean altitude increase 2260 feet) in a Swiss helicopter-based study.
At cruising altitude, 98% of patients had intracuff pressure >30 cm H2O, 72% had intracuff pressure>50 cm H2O, and 20% even had intracuff pressure>80 cm H2O.
Multiple different referring hospitals meant the type of tracheal tube was not controlled for.
Endotracheal Tube Intracuff Pressure During Helicopter Transport
Ann Emerg Med. 2010 Aug;56(2):89-93
Air medical intubation success
In contrast to literature showing high intubation failure rates by ground paramedics, a review over eight years of 369 intubations by flight paramedics and nurses showed successful tracheal intubation in 92.1% cases. Of the 369 intubation encounters, rapid sequence medications were given in 345. The authors ascribe their success to both initial training and mandatory ongoing practice and demonstration of competencies.
Performance of endotracheal intubation and rescue techniques by emergency services personnel in an air medical service
Prehosp Emerg Care. 2009 Jan-Mar;13(1):44-9
Physician/paramedic vs paramedic HEMS
Two English HEMS services covering the same geographical area, one physican / paramedic crewed and one double paramedic crewed, were compared. There were no differences in scene times. As well as predictably providing more rapid sequence induction, nerve blocks, and ketamine use, the physician-paramedic team discharged more people at scene and were more likely to cease resuscitation attempts in GCS 3 patients.
Influence of air ambulance doctors on on-scene times, clinical interventions, decision-making and independent paramedic practice.
Emerg Med J. 2009 Feb;26(2):128-34
Queensland HEMS intubations
Careflight Queensland report a 9 month series of intubations by their doctor-paramedic HEMS teams who performed 39 intubations (and assisted hospital doctors in an additonal 4), of which less than half were pre-hospital. There was one failed intubation, successfully ventilated with a laryngeal mask airway.
Emergency intubation: a prospective multicentre descriptive audit in an Australian helicopter emergency medical service.
Emerg Med J. 2009 Jan;26(1):65-9