Tag Archives: retrieval

The Myth of Error-Free


This guest post from a fellow retrieval clinician contains a powerful message for us all. We have a responsibility to recognise the inevitability of clinician error, and to develop systems within our organisations to support those involved to avoid the ‘second victim’ phenomenon.

– 0:01: Error – Noun – A mistake
I was the picture perfect hire, I had tailored most of my career for our line of work: retrieval.

I was a senior FRU Paramedic with a background including the hottest terms: “clinical development”, “ultrasound”, “research”, “educator” and the useless alphabet soup that one inevitably acquires through enough time in healthcare. My CV was mint, printed on subtly thick paper to give a subliminal message of “excellence” – calculated moves for a calculated outcome.

I knew the protocols, policies, procedures before stepping through the door. With a fantastic orientation behind me, I was fucking awesome. I was in the stratosphere of awesome. Flightsuit, the smell of Jet A, podcasts blaring. I approached the one-year mark in retrieval feeling at home. Being granted complete clinical autonomy, I found my work deeply rewarding, stimulating. Nitric Oxide, ECMO, Ketamine, DSI/RSI, TXAblahblahblah. The buzz of Twitter was my daily work.

“Error” was a word, a noun. Error was a picture of crashed airplanes or derailed trains. Droning Powerpoints featured the Swiss cheese model and non-sequitur diagrams with abstract buzz-words. If you sucked, you crashed and burned. If you were good, you landed on the goddamn Hudson River.


+ 0:01: I am Error
Through an error in medication transitions, a young girl died under my care. Regardless of the slew of contributing factors, the latent errors – I am Proximate Cause. That is a title that is hard to shed. That is a title that follows you through day and night, wakefulness and sleep, at work, in the car, in the shower, in bed.

Having lost my desire to return to work, I drafted a curt letter of resignation and began the search for work elsewhere where I might be free of consequence. I was filled with dread waiting for my pager to go off, whispering a prayer for an easy tasking. I lacked the organizational or personal tools to process the slew of emotions I felt – incompetence, inadequacy and guilt. Just as easily as I had woven myself into who I was, I came undone.

+ 0:02: “Error-Free” – Adjective – Containing no mistakes
Despite our best attempts to adopt the lessons of aviation, aerospace and high-stakes systems into our craft, we in retrieval are primed for error throughout the work we do every day. We dive into the currents of diagnostic momentum, wading through the thoughts of others. The chaos swirling around us leads to erosion of situational awareness and the interruption of processes. The unforgiving physiology of the critically ill also force us to tread close to the edge. The margins are razor-thin, the consequences are great.

Just like we prepare for the risks involved with a complex machine such as the helicopter, we must train for the consequences of the complexities of medicine, such as error.

Our teams train for the very remote risk of over-water ditching through egress training yet little time is spent on a constant danger to our teams and our patients. The injection of simulated error through misdiagnoses, human factors and poorly labeled vials can not only prime the team for the capture of potential error but also the very real emotions that can result from mistakes – simulated or not. Much discussion has been had on resiliency training as of late, much of its focus on preparing teams for success in the midst of crisis. We must train for events such as an error like mine to prepare the individual clinician for the crisis that follows.

Yet the burden should not fall squarely on the individual clinician. As high performing organizations we have a duty to put in place transparent processes that can provide clinicians with support following a mistake as well as a clarity about “what comes next” following a mistake. As I consider my subsequent hardship following the death of this child, much of it took root in the lack of support from my organization and a lack of clarity about what would happen as a result of all this. More damaging than anything else is the solitude that comes with being unable to share one’s experience. A “second victim” left to their own devices to cope with their mistake is a victim of a system that has failed them.

We are equally primed for injury. One of your greatest strengths becomes your Achilles heel. We pursue our passions and find that resus and retrieval is the medicine that stimulates the cortex. This work inevitably becomes a fundamental part of who we are. The pursuit of excellence under the demanding conditions of our work is all-consuming, leading to this work become the very mesh of our being – “The Retrievalist” “The Resuscitationist.”

Following error, we experience an unraveling of who we are. The hard fall to the bottom is hard to recover from. I write this to let you know that it gets better and that you’re not alone. The resignation letter is deleted, the bottles stop emptying, the sleep comes more easily and you accept that in our craft, “error-free” is just a word, an adjective and that “error” is a noun and does not define you.

 

Above HEMS image credit: Dr Fiona Reardon

 

Related Resources:

All Alone on Kangaroo Island” by Tim Leeuwenburg

Medical Error” by Simon Carley

 

London Trauma Conference 2014 Part 2

Day three is Air Ambulance and pre-hospital day and the great and the good are here en mass.
The heavy weights are coming out to make their points…..
selfUnarguably the best lecture of the day was delivered by our very own Cliff Reid on prehospital training. Using Sydney HEMS induction training he highlighted the challenges posed to prehospital services training doctors and paramedics rotating through the service.
Turning a good inhospital doctor into a great prehospital one in the space of an induction program requires focus. Knowledge is therefore not the focus of training, performance is. Often doctors already possess the clinical skills and knowledge and it is the application of these pre existing skills in challenging environments when cognitively overloaded that is the key.
 
The Sydney HEMS program provides the mindware and communication skills the practitioner needs to do this and drills these skills in simulated environments. He uses perturbation, so like the Bruce protocol exercise test the simulations just get harder until you are at the very limits of your bandwidth. Debriefing of course is important but the recommended protracted debrief is often impractical and unnecessary so simulations designed with cognitive traps are used to highlight learning points and are drilled until the message is received. In this way tress exposure enhances cognitive resilience. And importantly they use cross training, so the doctors and the paramedics undergo the same program so each member of the team understands the challenges faced by the other.
Does this sound like fun? For the shrinking violets out there it could be seen as threatening. But for the adrenaline junkies…….hell yeah!
It’s truly a training ethos that I buy into and I’d love to be able to achieve that standard of training in my own service.

SydneyHEMStops
Sydney HEMS Friends and Colleagues at the LTC

 
mwaveMicrowaves seem to be the future if diagnostic testing. This modality is fast, is associated with a radiation dose lower than that of a mobile phone, non invasive, portable and has been shown to provide good information. It can be used on heads for intracranial haemorrhage and stroke or chests for pneumothorax detection. It’s all in the early stages but seems like it will be a viable option in the future.
For further reading check out:
Diagnosis of subdural and intraparenchymal intracranial hemorrhage using a microwave-based detector
Clinical trial on subdural detection
Pneumothorax detection
 
How would you transfer a psychotic patient requiring specialist intervention that can only be received after aeromedical transfer? Stefan Mazur of MedSTAR, the retrieval service in South Australia shared their experience with ketamine to facilitate the safe transfer of these patients with no reports of adverse effects on the mental state of the patient, as first described by Minh Le Cong and colleagues. Is there no end to the usefulness of this drug? No wonder we’re experiencing a supply issue in the UK!
And finally, the ultimate reflective practice should include the post mortem of our critically sick patients. The approach the forensic pathologist takes is similar to a clinician (with the time pressure removed). They read the scene and use this information to predict injuries (sound familiar?). Post mortem CT scanning with recon provides yet another layer of information. We are missing a trick if we don’t seek this feedback to correlate with our clinical findings. Even better, rare practical skills are often routinely performed as part of the post mortem – we should be making use of this opportunity to train.

High Flow Nasal Cannulae In Paediatric Retrieval

High Flow Nasal Cannulae (HFNC) oxygen therapy was introduced in paediatric interfacility retrievals undertaken by the Mater Children’s PICU Retrieval Team in Queensland, Australia. In 793 under 2 year olds, HFNC was associated with a reduction in infants receiving invasive or non-invasive ventilation. 77% of the patients had bronchiolitis.
The rationale for this treatment is explained as:

Owing to the inherent properties of the infant respiratory system with small airways and high chest compliance, the risk of developing atelectasis is high in bronchiolitis. HFNC therapy applied early in the disease process may prevent progression of the disease and maintain normal lung volumes, thereby preventing atelectasis. As a result, the functional residual capacity can be maintained and work of breathing reduced, which may stabilize the patient sufficiently to avoid the need for intubation. For this purpose we used flow rates of 2 L/kg/min which have been shown to result in a positive end-expiratory pressure of 4–5 cmH2O

Read more on high-flow nasal cannula oxygen therapy.
High-flow nasal cannula (HFNC) support in interhospital transport of critically ill children
Intensive Care Med. 2014 Feb 15. [Epub ahead of print]
[EXPAND Abstract]

BACKGROUND: Optimal respiratory support for interhospital transport of critically ill children is challenging and has been scarcely investigated. High-flow nasal cannula (HFNC) therapy has emerged as a promising support mode in the paediatric intensive care unit (PICU), but no data are available on HFNC used during interhospital transport. We aimed to assess the safety of HFNC during retrievals of critically ill children and its impact on the need for invasive ventilation (IV).
METHODS: This was a retrospective, single-centre study of children under 2 years old transported by a specialized paediatric retrieval team to PICU. We compared IV rates before (2005-2008) and after introduction of HFNC therapy (2009-2012).
RESULTS: A total of 793 infants were transported. The mean transport duration was 1.4 h (range 0.25-8), with a mean distance of 205 km (2-2,856). Before introduction of HFNC, 7 % (n = 23) were retrieved on non-invasive ventilation (NIV) and 49 % (n = 163) on IV. After introduction of HFNC, 33 % (n = 150) were retrieved on HFNC, 2 % (n = 10) on NIV, whereas IV decreased to 35 % (n = 162, p < 0.001). No patients retrieved on HFNC required intubation during retrieval, or developed pneumothorax or cardiac arrest. Using HFNC was associated with a significant reduction in IV initiated by the retrieval team (multivariate OR 0.51; 95 % CI 0.27-0.95; p = 0.032).
CONCLUSIONS: We report on a major change of practice in transport of critically ill children in our retrieval system. HFNC therapy was increasingly used and was not inferior to low-flow oxygen or NIV. Randomized trials are needed to assess whether HFNC can reduce the need for IV in interhospital transport of critically ill children.

[/EXPAND]

i-STAT® analysis of intraosseous aspirate

In the absence of vascular access we may resort to sending intraosseous aspirates for analysis, but in some laboratories there is concern that the samples can block autoanalysers.
A study on haematology/oncology patients undergoing diagnostic bone marrow aspiration showed clinically acceptable agreement between venous and intraosseous measurements for pH, base excess, sodium, ionised calcium and glucose using an an i-STAT® point-of-care analyser.
Key points are:

  • The first 1-2 ml should be discarded (as in this study)
  • Lactate hasn’t been assessed
  • These patients weren’t critically ill

Analysis of bloodgas, electrolytes and glucose from intraosseous samples using an i-STAT® point-of-care analyser
Resuscitation. 2014 Mar;85(3):359-63
[EXPAND Abstract]


BACKGROUND: Intraosseous access is used in emergency medicine as an alternative when intravenous access is difficult to obtain. Intraosseous samples can be used for laboratory testing to guide treatment. Many laboratories are reluctant to analyse intraosseous samples, as they frequently block conventional laboratory equipment. We aimed to evaluate the feasibility and accuracy of analysis of intraosseous samples using an i-STAT(®) point-of-care analyser.

METHODS: Intravenous and intraosseous samples of twenty children presenting for scheduled diagnostic bone marrow aspiration were analysed using an i-STAT(®) point-of-care analyser. Sample types were compared using Bland Altman plots and by calculating intraclass correlation coefficients and coefficients of variance.

RESULTS: The handheld i-STAT(®)point-of-care analyser proved suitable for analysing intraosseous samples without technical difficulties. Differences between venous and intraosseous samples were clinically acceptable for pH, base excess, sodium, ionised calcium and glucose in these haemodynamically stable patients. The intraclass correlation coefficient was excellent (>0.8) for comparison of intraosseous and intravenous base excess, and moderate (around 0.6) for bicarbonate, sodium and glucose. The coefficient of variance of intraosseous samples was smaller than that of venous samples for most variables.

CONCLUSION: Analysis of intraosseous samples with a bedside, single-use cartridge-based analyser is feasible and avoids the problem of bone marrow contents damaging conventional laboratory equipment. In an emergency situation point-of-care analysis of intraosseous aspirates may be a useful guide to treatment.

[/EXPAND]

Double balloon pump fail

IABPicon
Two recent trials question the ongoing use of intra-aortic balloon pumps: in patients with acute myocardial infarction with cardiogenic shock undergoing revascularisation(1), and patients with poor left ventricular function undergoing coronary artery bypass surgery(2).
Editorialists Krischan D Sjauw and Jan J Piek from the Netherlands make the following commentary(3) in reference to one of the studies:
Although the results of IABP-SHOCK II question the usefulness of IABP therapy in cardiogenic shock, there still might be an indication for initial stabilisation of severely compromised patients, especially in centres without facilities for early revascularisation, as an adjunct to thrombolytic therapy, or to allow transport to specialised tertiary centres.
So retrieval specialists like me may still be up in the night transferring patients with balloon pumps, but these studies suggest this should be restricted to those with cardiogenic shock pending corrective therapy (eg. revascularisation for AMI or surgery for acute mitral valvular dysfunction). Unless the ECMO team gets to them first, of course.

1. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial
The Lancet, Volume 382, Issue 9905, Pages 1638 – 1645
[EXPAND Abstract]


BACKGROUND: In current international guidelines the recommendation for intra-aortic balloon pump (IABP) use has been downgraded in cardiogenic shock complicating acute myocardial infarction on the basis of registry data. In the largest randomised trial (IABP-SHOCK II), IABP support did not reduce 30 day mortality compared with control. However, previous trials in cardiogenic shock showed a mortality benefit only at extended follow-up. The present analysis therefore reports 6 and 12 month results.

METHODS: The IABP-SHOCK II trial was a randomised, open-label, multicentre trial. Patients with cardiogenic shock complicating acute myocardial infarction who were undergoing early revascularisation and optimum medical therapy were randomly assigned (1:1) to IABP versus control via a central web-based system. The primary efficacy endpoint was 30 day all-cause mortality, but 6 and 12 month follow-up was done in addition to quality-of-life assessment for all survivors with the Euroqol-5D questionnaire. A masked central committee adjudicated clinical outcomes. Patients and investigators were not masked to treatment allocation. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, NCT00491036.

FINDINGS: Between June 16, 2009, and March 3, 2012, 600 patients were assigned to IABP (n=301) or control (n=299). Of 595 patients completing 12 month follow-up, 155 (52%) of 299 patients in the IABP group and 152 (51%) of 296 patients in the control group had died (relative risk [RR] 1·01, 95% CI 0·86-1·18, p=0·91). There were no significant differences in reinfarction (RR 2·60, 95% CI 0·95-7·10, p=0·05), recurrent revascularisation (0·91, 0·58-1·41, p=0·77), or stroke (1·50, 0·25-8·84, p=1·00). For survivors, quality-of-life measures including mobility, self-care, usual activities, pain or discomfort, and anxiety or depression did not differ significantly between study groups.

INTERPRETATION: In patients undergoing early revascularisation for myocardial infarction complicated by cardiogenic shock, IABP did not reduce 12 month all-cause mortality.

[/EXPAND]
2. A Randomized Controlled Trial of Preoperative Intra-Aortic Balloon Pump in Coronary Patients With Poor Left Ventricular Function Undergoing Coronary Artery Bypass Surgery
Crit Care Med. 2013 Nov;41(11):2476-83
[EXPAND Abstract]


BACKGROUND: Preoperative intra-aortic balloon pump use in high-risk patients undergoing surgical coronary revascularization is still a matter of debate. The objective of this study is to determine whether the preoperative use of an intra-aortic balloon pump improves the outcome after coronary operations in high-risk patients.

DESIGN: Single-center prospective randomized controlled trial.

SETTING: Tertiary cardiac surgery center, research hospital.

PATIENTS: One hundred ten subjects undergoing coronary operations, with a poor left ventricular ejection fraction (< 35%) and no hemodynamic instability.
INTERVENTIONS:
Patients randomized to receive preincision intra-aortic balloon pump or no intervention.

MEASUREMENTS AND MAIN RESULTS: The primary outcome measurement was postoperative major morbidity rate, defined as one of prolonged mechanical ventilation, stroke, acute kidney injury, surgical revision, mediastinitis, and operative mortality. There was no difference in major morbidity rate (40% in intra-aortic balloon pump group and 31% in control group; odds ratio, 1.49 [95% CI, 0.68-3.33]). No differences were observed for cardiac index before and after the operation; at the arrival in the ICU, patients in the intra-aortic balloon pump group had a significantly (p = 0.01) lower mean systemic arterial pressure (80.1 ± 15.1 mm Hg) versus control group patients (89.2 ± 17.9 mm Hg). Fewer patients in the intra-aortic balloon pump group (24%) than those in the control group (44%) required dopamine infusion (p = 0.043).

CONCLUSIONS: This study demonstrates that in patients undergoing nonemergent coronary operations, with a stable hemodynamic profile and a left ventricular ejection fraction less than 35%, the preincision insertion of intra-aortic balloon pump does not result in a better outcome. Given the possible complications of intra-aortic balloon pump insertion, and the additional cost of the procedure, this approach is not justified.

[/EXPAND]
3. Is the intra-aortic balloon pump leaking?
Lancet 2013;382:1616-7

Awake intubation

I had some fun today getting intubated.
We used the Ambu aScope 2 and the Greater Sydney Area HEMS equipment and approach to airway management. I didn’t receive an antisialogogue or any analgesia or sedation.
The big learning point for me was how hard it was to anaesthetise the posterior part of my nasal cavity and nasopharynx. I thought the worst part would be any stimulation of my vocal cords or trachea with lidocaine or instrumentation, but this really was fine. Nebulised 2% lidocaine (the strongest concentration we have), atomised lidocaine (using a mucosal atomiser), and co-phenylcaine spray weren’t sufficient. I can see why people use pastes or gel to maintain mucosal contact while the lidocaine takes effect, but we don’t have those (yet). The best solution came from hooking up oxygen tubing to an iv cannula via a three way tap. Oxygen was run through at 2 l/min and lidocaine injected via the the three way tap. This enabled an atomised spray to be directed right onto the area concerned, and made the insertion of the nasotracheal tube more tolerable – although still unpleasant.
crazed-nutter-sm
The fact I could be intubated awake with reasonable topicalisation suggests most patients should tolerate it perhaps after even an analgesic dose of ketamine, eg. 30-40 mg in an adult. I suspect full dissocation would not be required, which is good for cooperation (“stick your tongue out sir”). I appreciate there are better agents, such as remifentanil or dexmedetomidine, but my area of interest is the retrieval setting – where I have neither the luxury of using these agents nor that of calling for anaesthetic back up.
Thanks to HEMS physicians Emily Stimson, Nirosha De Zoysa, Felicity Day, Chloe Tetlow, and Fergal McCourt for making it fun and safe.
Here’s the video:

Twitter has been helpful in gathering some advice, particularly from @DocJohnHinds:

Point of care analysis of intraosseous samples

Some good news for remote, rural, prehospital, and retrieval medicine clinicians who rely on point of care testing with the i-STAT® device. An animal study confirmed the reliability of testing aspirates from intraosseous samples taken from the tibia(1).
This is also good news for hospital practitioners when it comes to the acquisition of blood gas results, since there are concerns over the potential damage to blood gas analysers by bone marrow contents in the samples.
The researchers tested blood gases, acid–base status, lactate, haemoglobin, and electrolytes, and compared these with results from an arterial sample.
There was no malfunction of the equipment. Most of the acid–base parameters showed discrepancies between arterial and osseous samples: the average pH and base excess were consistently lower whilst pCO2 and lactate were higher in the intraosseous samples compared to the arterial. However the overall small degree and predictable direction of discrepancy in these values should preserve the clinical usefulness of intraosseous gases if these findings can be replicated in human subjects. pO2 was obviously very different between osseous and arterial samples.
They noted that aspiration of intraosseous samples was generally straightforward, especially immediately after placement of the cannulae, but on a few occasions more forceful aspiration was needed. They point out that this could possibly cause cellular lysis and affect the potassium analysis.
The authors consider the issue of how much aspirate should be discarded before taking a sample after intraosseous cannula insertion, and refer to a prior study which suggested that 2mL is adequate.

Summary

  • Intraosseous aspirate can be tested on an i-STAT® point-of-care analyser
  • Haemoglobin and electrolytes show good correlation with arterial samples
  • Acid-base, pCO2, and lactate differ slightly from arterial results but in a predictable direction and results are still likely to be clinically useful in an emergency
  • It may be worth discarding the first 2 ml of aspirate
  • These results require validation in human subjects

Analysis of intraosseous samples using point of care technology–an experimental study in the anaesthetised pig
Resuscitation. 2012 Nov;83(11):1381-5
[EXPAND Click to read abstract]

BACKGROUND: Intraosseous access is an essential method in emergency medicine when other forms of vascular access are unavailable and there is an urgent need for fluid or drug therapy. A number of publications have discussed the suitability of using intraosseous access for laboratory testing. We aimed to further evaluate this issue and to study the accuracy and precision of intraosseous measurements.
METHODS: Five healthy, anaesthetised pigs were instrumented with bilateral tibial intraosseous cannulae and an arterial catheter. Samples were collected hourly for 6h and analysed for blood gases, acid base status, haemoglobin and electrolytes using an I-Stat point of care analyser.
RESULTS: There was no clinically relevant difference between results from left and right intraosseous sites. The variability of the intraosseous sample values, measured as the coefficient of variance (CV), was maximally 11%, and smaller than for the arterial sample values for all variables except SO2. For most variables, there seems to be some degree of systematic difference between intraosseous and arterial results. However, the direction of this difference seems to be predictable.
CONCLUSION: Based on our findings in this animal model, cartridge based point of care instruments appear suitable for the analysis of intraosseous samples. The agreement between intraosseous and arterial analysis seems to be good enough for the method to be clinically useful. The precision, quantified in terms of CV, is at least as good for intraosseous as for arterial analysis. There is no clinically important difference between samples from left and right tibia, indicating a good reproducibility.

[/EXPAND]

Aeromedical retrieval: invasive vs noninvasive blood pressure

The chaps from the Emergency Medical Retrieval Service in the UK compared invasive (IABP) and non-invasive blood pressure (NIBP) measurements on the ground and in the air. They concluded that NIBP was unreliable, although it was no worse in the aeromedical environment than in the hospital. Not surprisingly there was a better correlation between the mean IABP and NIBP than systolic or diastolic pressures (oscillometric NIBP devices measure the mean BP and derive systolic and diastolic using an algorithm specific to the device).
In their summary, they recommend:

  • IABP monitoring should be used in any unwell patient in whom accurate blood pressure measurement is desirable.
  • The aeromedical transport environment does not lead to less precise NIBP results than the non-transport environment.
  • Where NIBP measurement is the only option, the mean blood pressure should be used in preference to systolic measurements


Blood pressure measurement is an essential physiological measurement for all critically ill patients. Previous work has shown that non-invasive blood pressure is not an accurate reflection of invasive blood pressure measurement. In a transport environment, the effects of motion and vibration may make non-invasive blood pressure less accurate.

Consecutive critically ill patients transported by a dedicated aeromedical retrieval and critical care transfer service with simultaneous invasive and non-invasive blood pressure measurements were analysed. Two sets of measurements were recorded, first in a hospital environment before departure (pre-flight) and a second during aeromedical transport (in-flight).

A total of 56 complete sets of data were analysed. Bland-Altman plots showed limits of agreement (precision) for pre-flight systolic blood pressure were -37.3 mmHg to 30.0 mmHg, and for pre-flight mean arterial pressure -20.5 mmHg to 25.0 mmHg. The limits of agreement for in-flight systolic blood pressure were -40.6 mmHg to 33.1 mmHg, while those for in-flight mean blood pressure in-flight were -23.6 mmHg to 24.6 mmHg. The bias for the four conditions ranged from 0.5 to -3.8 mmHg. There were no significant differences in values between pre-flight and in-flight blood pressure measurements for all categories of blood pressure measurement.

Thus, our data show that non-invasive blood pressure is not a precise reflection of invasive intra-arterial blood pressure. Mean blood pressure measured non-invasively may be a better marker of invasive blood pressure than systolic blood pressure. Our data show no evidence of non-invasive blood pressures being less accurate in an aeromedical transport environment.

Comparison of non-invasive and invasive blood pressure in aeromedical care
Anaesthesia. 2012 Dec;67(12):1343-7

Enoxaparin beats heparin for PCI

This is of interest to those of us in retrieval medicine, for logistic reasons: an infusion of heparin can be an unnecessary hassle during transport, especially if a subcutaneous injection prior to retrieval is a satisfactory alternative. This systematic review and meta-analysis shows enoxaparin appears to be superior to unfractionated heparin in reducing mortality and bleeding outcomes during percutaneous coronary intervention. This applies particularly to patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction


OBJECTIVE: To determine the efficacy and safety of enoxaparin compared with unfractionated heparin during percutaneous coronary intervention.

DESIGN: Systematic review and meta-analysis.

DATA SOURCES: Medline and Cochrane database of systematic reviews, January 1996 to May 2011.

STUDY SELECTION: Randomised and non-randomised studies comparing enoxaparin with unfractionated heparin during percutaneous coronary intervention and reporting on both mortality (efficacy end point) and major bleeding (safety end point) outcomes.

DATA EXTRACTION: Sample size, characteristics, and outcomes, extracted independently and analysed.

DATA SYNTHESIS: 23 trials representing 30 966 patients were identified, including 10 243 patients (33.1%) undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction, 8750 (28.2%) undergoing secondary percutaneous coronary intervention after fibrinolysis, and 11 973 (38.7%) with non-ST elevation acute coronary syndrome or stable patients scheduled for percutaneous coronary intervention. A total of 13 943 patients (45.0%) received enoxaparin and 17 023 (55.0%) unfractionated heparin. Enoxaparin was associated with significant reductions in death (relative risk 0.66, 95% confidence interval 0.57 to 0.76; P<0.001), the composite of death or myocardial infarction (0.68, 0.57 to 0.81; P<0.001), and complications of myocardial infarction (0.75, 0.6 to 0.85; P<0.001), and a reduction in incidence of major bleeding (0.80, 0.68 to 0.95; P=0.009). In patients who underwent primary percutaneous coronary intervention, the reduction in death (0.52, 0.42 to 0.64; P<0.001) was particularly significant and associated with a reduction in major bleeding (0.72, 0.56 to 0.93; P=0.01).
CONCLUSION: Enoxaparin seems to be superior to unfractionated heparin in reducing mortality and bleeding outcomes during percutaneous coronary intervention and particularly in patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction.

Efficacy and safety of enoxaparin versus unfractionated heparin during percutaneous coronary intervention: systematic review and meta-analysis
BMJ. 2012 Feb 3;344:e553

Training in prehospital and retrieval medicine

I’ve been too busy to blog literature updates for a couple of weeks since I and my colleagues have been flat out running a two week training course in prehospital and retrieval medicine.
Our Helicopter Emergency Medical Service physicians and paramedics care for a wide range of adult and paediatric trauma and critical care patients in some challenging environments. We therefore need to provide a fairly comprehensive induction course for new recruits.
The new guys did us proud. They just need to stay this awesome.