Tag Archives: ECLS


Louisa in London – Prehospital Lessons from LTC2015

The London Trauma Conference remains up there on my list of ‘must go’ conferences to attend. It marks the end of the year, fills me with hope and inspires me for the future. Unfortunately this year I was torn between the conference and the demands of clinical directorship so I could only get to the “Air Ambulance & Prehospital Care Day”. At least this way I’m saved from the dilemma of which sessions to attend!
So what were the highlights of the Prehospital Day? For me, they were Prehospital ECMO,’Picking Up the Pieces’, and the REBOA update.

Prehospital ECMO
Professor Pierre Carli gave us an update on prehospital ECMO. Professor Carli (not to be confused with the equally awesome Professor Carley) is the medical director of Service d’Aide Médicale Urgente (SAMU) in Paris. They’ve been doing prehospital ECMO in Paris since 2011 and the data analysed over three years reveals a 10% survival to hospital discharge rate. We know from the work in Asia that successful outcome following traditional cardiac arrest management and ECPR is related to the speed of the intervention. Transposing the time to intervention from his 2011 – 2013 data onto the survival curve that Chen et al produced explains why the success rate is limited:

LTC2015

The revised 2015 process aims to reduce the duration of CPR, reduce time to ECMO and therefore improve survival to discharge rates. They are doing this by dispatching the ECMO team earlier.

The eligibility criteria for ECPR is also changing; patients >18 and <75years, refractory cardiac arrest (defined as failure of ROSC after 20min of CPR), no flow for < 5 minutes with shockable rhythm or signs of life or hypothermia or intoxication, EtCO2 > 10mmHg at time of inclusion and no major comorbidity.

Already there appears to be an improvement with 16 patients treated using the revised protocol with 5 survivors (31%) – although we must be wary of the small numbers.
A concern that was expressed by the French Department of Health was the fear of a reduction in organ donation with the introduction of ECPR – it turns out that rates have remained stable. In fact the condition of non heart beating donated organs is better when ECMO has been instigated; the long term effects on organ donation are being assessed.

I’m without doubt that prehospital ECMO/ED ECMO is the future although currently in the UK our hospital systems aren’t ready for this. If you want to learn more then look at the ED ECMO site or book on one of the many emerging courses on ED ECMO including the one that is run by Dr Simon Finney at the London Trauma Conference, or if you want to go further afield you could try San Diego (although places are fully booked on the next course).

Picking Up the Pieces
The Keynote speaker was Professor Sir Simon Wessely. He is a psychiatrist with a specialist interest in military psychology and his brief was to describe to us the public response to traumatic incidents. He has worked with the military and in civilian situations. After the 7/7 London bombings the population of London was surveyed: those most likely to be affected were of lower social class, of Muslim faith, those that had a relative that was injured, those unsure of the safety of others, those with no previous experience of terrorism and those experiencing difficulty in contacting others by mobile phone. Obviously there are many factors that we cannot influence however on the basis of the last risk factor our response to incidents has changed – the active discouragement to make phone calls has been changed to a recommendation of making short calls to friends and relatives.
The previous practice of offering immediate psychological debriefing to those involved in incidents was discounted by Prof Wessely – his research demonstrated that this intervention was not only not required but could actually result in harm: only a minority have ongoing psychological distress that can benefit from formal psychological input, which should occur later.
The approach that should be taken is to allow that individual to utilise their own social networks (family, friends, and colleagues) and to accept that in some cases the individual may not want or need to talk. This has led to the development of the Trauma Risk Management (TRIM) system which provides individuals within organisations that are exposed to traumatic events the skills required to identify those at risk of developing psychological problems and to recognise the signs and symptoms of those in difficulty. To a certain extent we naturally do this for our peers – I have spent many a night sitting in the ‘Good Samaritan’ pub with colleagues from the Royal London Hospital and London’s Air Ambulance – but having a more formal system is probably of benefit to enable those who have ongoing difficulties to access additional support.

REBOA update
Finally, the REBOA update – Resuscitative Endovascular Balloon Occlusion of the Aorta. One year on, Dr Sammy Sadek informed us that there are now more courses teaching the REBOA technique than there are (prehospital) patients that have received it. Over the last year only seven patients have qualified for this intervention in London, far fewer than they had anticipated. Another three patients died before REBOA could be instigated. All patients had a positive cardiovascular response. Four of the seven died from causes other than exsanguination. Is it worth all the effort and resource to deliver this intervention when such a select group will benefit?

Obviously there was much more covered in the day, this is just a taste. If you’ve never been to the London Trauma Conference then I definitely would recommend it and even if you have been before there are so many breakout sessions now there is always something for everyone.

More on the London Trauma Conference:

Merry Christmas and see you next year!

Louisa Chan

Left Ventricular Assist Device for Cardiac Arrest?

LVADguyiconAn interesting case report by Dr Heidlebaugh and colleagues from the Department of Emergency Medicine at the William Beaumont Hospital describes a 72 year old marathon runner who arrested during cardiac catheterisation. It suggests a possible novel alternative to ECMO for cardiac arrest.

The patient became bradycardic then asystolic during catheterisation of his right coronary artery. High quality CPR was initiated and an Impella LV assist device was placed. This restored cardiac output which was followed by episodes of venticular fibrillation and then ROSC. His initial low ejection fraction of 15% recovered after targeted temperature management on ICU to 50% and he fully recovered neurologically.

This patient already had femoral arterial access for introduction of the Impella, since he was in a cath lab. He also had immediate CPR on arresting, and was an abnormally fit 72 year old. It remains to be seen whether this procedure can be applied to other patients in cardiac arrest. The authors state:

..until ECLS is readily available, poor survival and neurological outcome after cardiac arrest might be avoided in many patients by the use of pLVAD to offload the LV and enhance perfusion. Furthermore, there may be a subset of patients, in whom the support that pLVAD offers is sufficient to optimize hemodynamic parameters and bridge to ROSC, thus reducing the need for ECLS.

This video by Dr. I-Wen Wang from the Barnes-Jewish Hospital explains how the Impella is inserted and how it works.

 

 

Full Neurologic Recovery and Return of Spontaneous Circulation Following Prolonged Cardiac Arrest Facilitated by Percutaneous Left Ventricular Assist Device
Ther Hypothermia Temp Manag. 2014 Sep 3. [Epub ahead of print]


Sudden cardiac arrest is associated with high early mortality, which is largely related to postcardiac arrest syndrome characterized by an acute but often transient decrease in left ventricular (LV) function. The stunned LV provides poor cardiac output, which compounds the initial global insult from hypoperfusion. If employed early, an LV assist device (LVAD) may improve survival and neurologic outcome; however, traditional methods of augmenting LV function have significant drawbacks, limiting their usefulness in the periarrest period. Full cardiac support with cardiopulmonary bypass is not always readily available but is increasingly being studied as a tool to intensify resuscitation. There have been no controlled trials studying the early use of percutaneous LVADs (pLVADs) in pericardiac arrest patients or intra-arrest as a bridge to return of spontaneous circulation. This article presents a case study and discussion of a patient who arrested while undergoing an elective coronary angioplasty and suffered prolonged cardiopulmonary resuscitation. During resuscitation, treatment included placement of a pLVAD and initiation of therapeutic hypothermia. The patient made a rapid and full recovery.
Image is of M. Joshua Morris, a happy LVAD recipient (not the patient in the described study) who kindly alerted me to this article. Used with permission.

Prehospital ECLS – it’s happening

Patients with refractory (>30 mins) cardiac arrest underwent prehospital cannulation for extracorporeal life support in a French feasibility study. A physician-paramedic team responded by car in Paris to cardiac arrest cases that met inclusion criteria. Mechanical CPR devices (Autopulse or LUCAS) were applied during cannulation. Femoral venoarterial ECMO was instituted using a Maquet Cardiohelp system. Blood products and inotropes, echocardiography, and hypothermia were included in the prehospital management package.

Seven patients were treated, with a mean age of 42 (+/- SD of 16, no median given). ECLS was started an average 57 min (±21) after the onset of ACLS. One patient survived to discharge neurologically intact. Two brain dead patients became organ donors. The survivor had hypertrophic cardiomyopathy with refractory ventricular fibrillation.

Safety and feasibility of prehospital extra corporeal life support implementation by non-surgeons for out-of-hospital refractory cardiac arrest
Resuscitation. 2013 Nov;84(11):1525-9


BACKGROUND: Extra corporeal life support (ECLS) has been recently introduced in the treatment of refractory cardiac arrest (CA). Several studies have assessed the use of ECLS in refractory CA once the patients reach hospital. The time between CA and the implementation of ECLS is a major prognostic factor for survival. The main predictive factor for survival is ECLS access time. Pre hospital ECLS implementation could reduce access time. We therefore decided to assess the feasibility and safety of prehospital ECLS implementation (PH-ECLS) in a pilot study.

METHODS AND RESULTS: From January 2011 to January 2012, PH-ECLS implementation for refractory CA was performed in 7 patients by a PH-ECLS team including emergency and/or intensivist physicians and paramedics. Patients were included prospectively and consecutively if the following criteria were met: they had a witnessed CA; CPR was initiated within the first 5min of CA and/or there were signs of life during CPR; an PH-ECLS team was available and absence of severe comorbidities. ECLS flow was established in all patients. ECLS was started 22min (±6) after the incision, and 57min (±21) after the onset of advanced cardiovascular life support (ACLS). In one patient, ECLS was stopped for 10min due to an accidental decannulation. One patient survived without sequelae. Three patients developed brain death.

CONCLUSIONS: This pilot study suggests that PH-ECLS performed by non-surgeons is safe and feasible. Further studies are needed to confirm the time saved by this strategy and its potential effect on survival.

ECMO for paediatric cardiac arrest

The Taiwanese are at it again with their extracorporeal life support. This time, they report their outcomes in children who received ECMO for in-hospital cardiac arrest. Interestingly, the patients with pure cardiac causes of cardiac arrest had a survival rate similar to patients with non-cardiac causes.


PURPOSE: The study aims to describe 11 years of experience with extracorporeal cardiopulmonary resuscitation (ECPR) for in-hospital paediatric cardiac arrest in a university affiliated tertiary care hospital.

METHODS: Paediatric patients who received extracorporeal membrane oxygenation (ECMO) during active extracorporeal cardiopulmonary resuscitation (ECPR) at our centre from 1999 to 2009 were included in this retrospective study. The results from three different cohorts (1999-2001, 2002-2005 and 2006-2009) were compared. Survival rates and neurological outcomes were analysed. Favourable neurological outcome was defined as paediatric cerebral performance categories (PCPC) 1, 2 and 3.

RESULTS: We identified 54 ECPR events. The survival rate to hospital discharge was 46% (25/54), and 21 (84%) of the survivors had favourable neurological outcomes. The duration of CPR was 39±17 min in the survivors and 52±45 min in the non-survivors (p=NS). The patients with pure cardiac causes of cardiac arrest had a survival rate similar to patients with non-cardiac causes (47% (18/38) vs. 44% (7/16), p=NS). The non-survivors had higher serum lactate levels prior to ECPR (13.4±6.4 vs. 8.8±5.1 mmol/L, p<0.01) and more renal failure after ECPR (66% (19/29) vs. 20% (5/25), p<0.01). The patients resuscitated between 2006 and 2009 had shorter durations of CPR (34±13 vs. 78±76 min, p=0.032) and higher rates of survival (55% (16/29) vs. 0% (0/8), p=0.017) than those resuscitated between 1999 and 2002.

CONCLUSIONS: In our single-centre experience with ECPR for paediatric in-hospital cardiac arrest, the duration of CPR has become shorter and outcomes have improved in recent years. Higher pre-ECPR lactate levels and the presence of post-ECPR renal failure were associated with increased mortality. The presence of non-cardiac causes of cardiac arrest did not preclude successful ECPR outcomes. The duration of CPR was not significantly associated with poor outcomes in this study.

Eleven years of experience with extracorporeal cardiopulmonary resuscitation for paediatric patients with in-hospital cardiac arrest
Resuscitation. 2012 Jun;83(6):710-4

Surgical treatment for acute massive pulmonary embolism

A recent paper reminds us that surgery is an option in the management of massive pulmonary embolism(1), to be considered in the patient for whom thrombolysis has failed or is contraindicated. Good outcomes were produced when surgery was performed in a centre capable of cardiopulmonary bypass (6% 30-day postoperative mortality), but is surgery an option when these facilities are unavailable?

The “venous inflow occlusion” technique involves clamping the venae cavae prior to removing clot directly from the pulmonary artery and its branches after median sternotomy, and can be performed in any hospital with surgical facilities. Under normothermic conditions, speed is of the essence once cardiac arrest occurs, since the irreversible anoxic cerebral injury will occur after just a few minutes.

Clarke and Abrams wrote in the Lancet in 1972(2):

Our use of venous inflow-occlusion has given results which compare well with those obtained with extracorporeal circulation. 50% of our patients survived. All patients who had emboli removed without an episode of ventricular asystole survived surgery. Late deaths in 3 patients were from causes unrelated to pulmonary embolism, and from a further massive pulmonary embolus a week later. The technique has been applied with equal success in a major hospital fully equipped for cardiac surgery and in hospitals where resident and nursing staff had no experience of either thoracic or cardiac surgery. The simplicity and speed of the method has enabled the obstructed right ventricle to be relieved within thirty minutes of the onset of symptoms. The interval between induction of anaesthesia and the skin incision should be kept as short as possible, and drugs to maintain the blood pressure should be given. The period between skin incision and the restoration of the circulation has, with practice, been reduced to ten minutes.

But this clearly still requires surgical expertise and facilities. Emergency physicians can open the chest to deal with penetrating trauma. Could an ED thoracotomy facilitate clot removal from the pulmonary artery?

In 1969, a lady in her 50s arrested on the ward after an operation to remove a mass via a left lateral thoractomy. Pulmonary embolism was suspected and her thoracotomy wound was re-opened and the pulmonary artery incised, resulting in the removal of large amounts of clot. Return of spontaneous circulation resulted after a brief period of internal cardiac massage. Her case was written up decades later, in 1998(3):

The patient recovered rapidly and left the hospital on the 21st day without signs of cerebral damage. This patient is now 86 years old, mentally normal, living alone, and doing her own housekeeping. She remembers the hospital stay and the past years as worth living

Some patients may be considered too high risk for surgery and in some centres Extracorporeal Membrane Oxygenation (ECMO) is an option. It has been used both as life support pending surgery(4), or as an alternative to surgery to allow heparinisation to be used(5,6).

In summary, some patients with massive pulmonary embolism may benefit from surgery (contraindication to ‘lysis or failed ‘lysis). Getting them to surgery alive, or operating on them during cardiac arrest, is a challenge. Ideally they would undergo embolectomy under cardopulmonary bypass in the operating room, or could be placed on ECMO in the ED prior to going to the OR. If they present to a centre without these facilities, then the venous inflow occlusion technique could be used in the OR without bypass. Just rarely a patient may present in extremis with PE to an ED without these options. If that patient has major contraindications to thrombolysis, would an ED thoracotomy be something you would entertain?

I have done several thoracotomies for penetrating trauma but never for PE. I do not pretend to know how, and cannot find a case report of ED thoracotomy for pulmonary embolism in the literature. I’m therefore NOT recommending it. However, I would love to know people’s views on its feasibility. A possible approach could be summarised as:

Massive pulmonary embolism fascinates me, because it’s seen in the ‘talk and die’ patient. It is a single, treatable pathology that if diagnosed and treated appropriately truly makes the difference between life and death. When medicine presents us with an opportunity ‘on a plate’ like that to save a life, we need to be prepared. I have had great saves with this diagnosis and sadly have seen disastrous failures to act. When the time comes, we need to ask: ‘have we explored all options?’.

1. Surgical treatment of acute pulmonary embolism–a 12-year retrospective analysis.
Scand Cardiovasc J. 2012 Jun;46(3):172-6. Epub 2012 Mar 27.


OBJECTIVES: Surgical embolectomy for acute pulmonary embolism (PE) is considered to be a high risk procedure and therefore a last treatment option. We wanted to evaluate the procedures role in modern treatment of acute PE.

DESIGN: All data on patients treated with surgical embolectomy for acute PE were retrieved from our clinical database. The mortality was extracted from the Danish mortality register.

RESULTS: From October 1998 to July 2010, 33 patients underwent surgical embolectomy. All procedures were done through a median sternotomy and extracorporeal circulation. Twenty-six patients were diagnosed with a high risk PE and 7 with an intermediate risk PE and intracardial pathology. Six patients had been insufficiently treated with thrombolysis. Thirteen patients had contraindication for thrombolysis. Six patients were brought to the operating theatre in cardiogenic shock, 8 needed ventilator support, and 1 was in cardiac arrest. The postoperative 30-day mortality was 6% and during the 12-year follow-up the cumulative survival was 80% with 4 late deaths.

CONCLUSION: Surgical pulmonary embolectomy can be performed with low mortality although the treated patients belong to the most compromised part of the PE population. The results support surgical embolectomy as a vital part of the treatment algorithm for acute PE.

2. Pulmonary embolectomy with venous inflow-occlusion.
The Lancet 1972;1(7754):767–769


Massive pulmonary emboli have been removed surgically from 26 patients. The technique of normothermic circulatory arrest by venous inflow-occlusion was used in 25 patients. 13 patients survived. There were 10 operative deaths and 3 hospital deaths. Diagnosis was based upon clinical findings supplemented by electrocardiography and a plain radiograph of the chest. Surgery was offered to patients having a pulmonary embolus sufficiently massive to produce sustained hypotension. All patients whose hearts stopped beating before the embolectomy died. 6 successful operations were performed in hospitals without facilities for cardiac surgery. The method is recommended for its simplicity.

3. Left Anterior Thoracotomy for Pulmonary Embolectomy With 29-Year Follow-up
The Annals of Thoracic Surgery 1998, 66(4):1420-1421


Pulmonary embolectomy is usually performed in cardiopulmonary bypass. In acute situations too much time can be lost in setting up and connecting the pump oxygenator; this delay can cause cerebral damage in a patient with circulatory arrest. In such a situation left anterior thoracotomy can provide an ideal approach. An emergency thoracotomy can be performed in a few seconds. The lung automatically retracts. The phrenic nerve, pulmonary artery, and pericardium are clearly seen, and they outline the area for embolectomy. A case in which such an approach was successfully used is described.

4.ECMO treatment saved life of a young woman with acute pulmonary embolism
Lakartidningen 2004, 101(44):3420-3421


A 42-year old obese female using contraceptive medication was admitted to the emergency room because of sudden onset of dyspnoea and hypoxia. Computed tomography showed massive pulmonary emboli. Despite initial treatment with thrombolysis her condition deteriorated further and she was referred for acute surgery to our clinic. Before putting the patient to sleep extracorporeal circulation was instituted with access from the groin. After anaesthesia a median sternotomy was performed. With the heart beating, the main pulmonary artery was incised and a 9 cm long thrombus was removed. Immediate weaning from the heart-lung machine was not possible, mainly because of bleeding to the airways. The right atrium and the aorta was therefore cannulated and an extracorporeal circulation membrane oxygenator (ECMO) was used for three days. The patient required several re-entries for bleeding and a tracheotomy during the postoperative course. She was fully recovered three months after the operation.

5. Extracorporeal membrane oxygenator for pulmonary embolism.
The Annals of Thoracic Surgery 1997, 64(3):883-884 Free full text

6. Peripheral Extracorporeal Membrane Oxygenation: Comprehensive Therapy for High-Risk Massive Pulmonary Embolism
Ann Thorac Surg 2012;94:104–8


Background: Although commonly reserved as a last line of defense, experienced centers have reported excellent results with pulmonary embolectomy for massive and submassive pulmonary embolism (PE). We present a contemporary surgical series for PE that demonstrates the utility of peripheral extracorporeal membrane oxygenation (pECMO) for high-risk surgical candidates.

Methods: Between June 2005 and April 2011, 29 patients were treated for massive or submassive pulmonary embolism, with surgical embolectomy performed in 26. Four high-risk patients were placed on pECMO, established by percutaneously cannulating the right atrium through a femoral vein and perfusing by a Dacron graft anastomosed to the axillary artery. A small, extracorporeal, rotary assist device was used, interposing a compact oxygenator in the circuit, and maintaining anticoagulation with heparin.

Results: Extracorporeal membrane oxygenation was weaned in 3 of 4 patients after 5.3 days (5, 5, and 6), with normalization of right ventricular dysfunction and pulmonary artery pressure (44.0 ± 2.0 to 24.5 ± 5.5 mm Hg) by ECHO. Follow-up computed tomographies showed several peripheral, nearly resorbed emboli in 1 case and complete resolution in 2 others. The fourth patient, not improving after 10 days, underwent surgery where an embolic liposarcoma was extracted. For all 29 cases, hospital and 30-day mortality was 0% and all patients were discharged, with average postoperative length of stay of 15 days for embolectomy and 17 days for pECMO.

Conclusions: Heparin therapy with pECMO support is a rapid, effective option for patients who might benefit from pulmonary embolectomy but are at high risk for surgery.

Extracorporeal cardiopulmonary resuscitation

You have a patient in cardiac arrest who has had excellent resuscitation from the point of collapse, and who has treatable underlying pathology (eg. PE or STEMI). However you’re unable to get return of spontaneous circulation so you call it. Someone just died for whom the technology exists to save them. Extracorporeal life support (ECLS) supports heart and lung function by externally providing circulatory flow and gas exchange until the patient’s underlying cause of arrest is treated or recovers.

ECLS requires an extracorporeal membrane oxygenation (ECMO) circuit to be placed during the cardiac arrest resuscitation. This may sound like extreme stuff, but there have been some amazing saves with this technology, and large numbers of in-hospital and out-of-hospital arrest patients have been treated in Japan, Korea, and Taiwan. ECMO has even been commenced in the field by prehospital emergency physicians.

An inspiring EMCrit podcast with Dr Joe Bellezzo described how this technology is applied at Sharp Memorial Hospital in San Diego. Bellezzo and colleagues have now published a series of their out-of-hospital arrest cases who received ECLS initiated by emergency physicians(1).

Coming back to the Japanese, a multicentre prospective cohort study of ECLS for out-of hospital cardiac arrest (the ‘SAVE-J’ study) selected patients with VF or pulseless VT in whom no ROSC was achieved with standard resuscitative measures. Their striking results mirror other ECLS studies and were published in abstract form in November 2011(2).

To me, the overwhelming take home messages from what I’ve seen and read on this are:


1. ECLS can provide dramatic saves with neurologically intact survival in cardiac arrest cases that otherwise would be dead.

2. The critical factor for successful clinical outcomes and avoidance of wasted resources and clinical futility is case selection. The underlying cause of arrest needs to be reversible (eg. myocarditis) or treatable (eg. STEMI) and good resuscitation needs to have been in place prior to ECLS.

3. In the right hospital with the right resuscitation team, it can be done.

1. Emergency physician-initiated extracorporeal cardiopulmonary resuscitation
Resuscitation. 2012 Aug;83(8):966-70


CONTEXT: Extracorporeal cardiopulmonary resuscitation (ECPR) refers to emergent percutaneous veno-arterial cardiopulmonary bypass to stabilize and provide temporary support of patients who suffer cardiopulmonary arrest. Initiation of ECPR by emergency physicians with meaningful long-term patient survival has not been demonstrated.

OBJECTIVE: To determine whether emergency physicians could successfully incorporate ECPR into the resuscitation of patients who present to the emergency department (ED) with cardiopulmonary collapse refractory to traditional resuscitative efforts.

DESIGN: A three-stage algorithm was developed for ED ECPR in patients meeting inclusion/exclusion criteria. We report a case series describing our experience with this algorithm over a 1-year period.

RESULTS: 42 patients presented to our ED with cardiopulmonary collapse over the 1-year study period. Of these, 18 patients met inclusion/exclusion criteria for the algorithm. 8 patients were admitted to the hospital after successful ED ECPR and 5 of those patients survived to hospital discharge neurologically intact. 10 patients were not started on bypass support because either their clinical conditions improved or resuscitative efforts were terminated.

CONCLUSION: Emergency physicians can successfully incorporate ED ECPR in the resuscitation of patients who suffer acute cardiopulmonary collapse. More studies are necessary to determine the true efficacy of this therapy.

2. Multicenter Non-Randomized Prospective Cohort Study of Extracorporeal Cardiopulmonary Resuscitation for Out-of Hospital Cardiac Arrest: Study of Advanced Life Support for Ventricular Fibrillation with Extracorporeal Circulation in Japan (SAVE-J)
Circulation 2011; 124: A18132


Background: This study is aimed to examine the efficacy of extracorporeal cardiopulmonary resuscitation (ECPR) for patients in out-of hospital cardiac arrest (OHCA) with ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT).

Method: The design of this study is a multicenter non-randomized prospective cohort study. Hypothesis is that the outcome of OHCA with VF or pulseless VT is similar between ECPR and conventional advanced life support (ALS). During from Oct. 2008 to Dec. 2010, forty six tertiary emergency hospitals were participated in this study. Patient inclusion criteria were 1) VF or pulseless VT on scene, 2) cardiac arrest on arrival at hospital, 3) within 45 minutes from a call to an arrival of hospital, and 4) non-ROSC by conventional ALS during 15 minutes after an arrival at hospital. Exclusion criteria were 1) age: 75 yr, 2) poor activities of daily livings, 3) non-cardiac verified cardiac arrest, and 4) hypothermia. According to the inclusion criteria, ECPR was adopted for OHCA in 26 hospitals (ECPR group) and conventional ALS was planned in 20 hospitals (non-ECPR group). Both groups (Intention-to-treat) were analyzed about the proportion of patients with favorable outcome (CPC1 or 2) assessed with the Glasgow-Pittsburgh Cerebral Performance and Overall Performance Categories at 1 month by chi square test and Fisher exact probability test.

Results: One hundred and eighty patients of ECPR group and 134 patients of non-ECPR group were enrolled. There was no difference between the background of ECPR group and non-ECPR group; Average age (56.0 VS 56.9), Witnessed (72.8% VS 75.4%), Lay-rescuer CPR (49.4% VS 45.5%), Acute coronary syndrome (65.6% VS 61.4%), Minutes from collapse to emergency department (26.8 VS 30.0). The favorable outcome rate in ECPR group (12.4%, 22 patients) was statistically higher than the rate in non-ECPR group (1.6%, two patients) (p<0.001).

Conclusion: Extracorporeal cardiopulmonary resuscitation may improve the outcome of out-of hospital cardiac arrest with VF or pulseless VT without ROSC by conventional ALS during 15 minutes after an arrival at hospital.

Pre-hospital ECMO

Two cases are reported of the pre-hospital institution of venoarterial extracorporeal membrane oxygenation (ECMO) for patients in cardiac arrest. One was from France and the other from Germany – both countries with mature physician-staffed pre-hospital systems. The two cases were a 9 yr old drowning victim1 and a 48 year old marathon runner2. They each received BLS then ACLS then ECMO, and both went from asystole to sinus rhythm after the institution of ECMO. Sadly both failed to neurologically recover and died in hospital.

If irreversible anoxic encephalopathy could be detected in the field, patients could be better selected for this intervention. An editorialist3 states:



Until we have a hand held device which can measure neuronal integrity on a cellular level in the field we must use our best judgement, and in many cases give the patient the benefit of the doubt by cannulating them, cooling for 24 h and then making a neurological assessment and withdrawing ECLS if necessary.


Other issues to consider are:

  • Can society afford this level of intervention?
  • Could this intervention, when associated with brain death, result in sufficiently recovered organs for transplantation?
  • How can the infrastructure be created to enable rapid institution of pre-hospital ECMO?

I suspect as the equipment becomes even more portable and self-maintaining, pre-hospital / retrieval physicians already expert in critical care interventions such as seldinger-guided vascular access will be the ones instituting this therapy. In the meantime, we await evidence of outcome benefit and some objective means of case selection.

1. Out-of-hospital extracorporeal life support for cardiac arrest—A case report
Resuscitation. 2011 Sep;82(9):1243-5

2. Out-of-hospital extra-corporeal life support implantation during refractory cardiac arrest in a half-marathon runner
Resuscitation. 2011 Sep;82(9):1239-42

3. Community extracorporeal life support for cardiac arrest – When should it be used?
Resuscitation. 2011 Sep;82(9):1117

ECLS on Japanese, in Japanese

A review of extracorporeal life support for out-of-hospital cardiac arrest was undertaken, looking specifically at studies published in the Japanese literature. The abstract is shown below. Based on these findings, inclusion criteria for a multicentre, prospective non-randomised cohort study were established. The ‘SAVE-J: Study of advanced life support for ventricular fibrillation with extracorporeal circulation in Japan’ was launched and has been ongoing since October 2008 to compare the proportion of patients with a favourable neurological outcome by intention-to-treat in an ECPR group with a non-ECPR group. Inclusion criteria for this new study are:

  1. shockable rhythm on the initial ECG
  2. cardiac arrest on arrival at hospital regardless of the presence of recovery of spontaneous circulation before arrival
  3. arrival at hospital within 45 min of the call for an ambulance or cardiac arrest;
  4. cardiac arrest remaining for more than 15 min after arrival at hospital.

I look forward to seeing the results SAVE-J. If you wish to read more, you can check out the SAVE-J study website.

AIM: Although favourable outcomes in patients receiving extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest have been frequently reported in Japanese journals since the late 1980s, there has been no meta-analysis of ECPR in Japan. This study reviewed and analysed all previous studies in Japan to clarify the survival rate of patients receiving ECPR.

MATERIAL AND METHODS: Case reports, case series and abstracts of scientific meetings of ECPR for out-of-hospital cardiac arrest written in Japanese between 1983 and 2008 were collected. The characteristics and outcomes of patients were investigated, and the influence of publication bias of the case-series studies was examined by the funnel-plot method.

RESULTS: There were 1282 out-of-hospital cardiac arrest patients, who received ECPR in 105 reports during the period. The survival rate at discharge given for 516 cases was 26.7±1.4%. The funnel plot presented the relationship between the number of cases of each report and the survival rate at discharge as the reverse-funnel type that centred on the average survival rate. In-depth review of 139 cases found that the rates of good recovery, mild disability, severe disability, vegetative state, death at hospital discharge and non-recorded in all cases were 48.2%, 2.9%, 2.2%, 2.9%, 37.4% and 6.4%, respectively.

CONCLUSIONS: Based on the results of previous reports with low publication bias in Japan, ECPR appears to provide a higher survival rate with excellent neurological outcome in patients with out-of-hospital cardiac arrest.

Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: a review of the Japanese literature
Resuscitation. 2011 Jan;82(1):10-4

Extracorporeal CPR

Extracorporeal cardiopulmonary resuscitation (E-CPR) using extracorporeal membrane oxygenation (ECMO) support during inhospital cardiac arrest has been attempted to improve the outcome of cardiopulmonary resuscitation (CPR). A retrospective, single-center, observational study from Korea analysed a total of 406 adult patients with witnessed inhospital cardiac arrest receiving cardiopulmonary resuscitation for >10 mins.

How their system works: An ECMO cart was transported to the CPR site within 5–10 mins during the day and within 10–20 mins during the night shift. The decision to use E-CPR was dependent on the CPR team leader. Application of ECMO was usually considered under conditions of prolonged arrest (when there was no ROSC after 10–20 mins of CPR), recurrent arrest (when ROSC could not be maintained), or when the patient could not be expected to recover as a result of underlying severe left ventricular dysfunction or coronary artery disease despite a short CPR duration (end-stage heart failure requiring transplantation, left main coronary artery occlusion, etc)

The primary end point was a survival discharge with minimal neurologic impairment.

No. ECMO. I said ECMO.

85 patients underwent E-CPR and 321 underwent C- CPR. ECMO implantation was successful in 94.1% (80 of 85) in the E-CPR group, except for three cannulation failures and two ECMO flow failures. There was a signficantly greater proportion of patients with primary cardiac disease in the E-CPR group. Propensity score matching was used to balance the baseline characteristics and cardiopulmonary resuscitation variables that could potentially affect prognosis. In the matched population (n = 120), the survival discharge rate with minimal neurologic impairment in the extracorporeal cardiopulmonary resuscitation group was significantly higher than that in the conventional cardiopulmonary resuscitation group (odds ratio of mortality or significant neurologic deficit, 0.17; 95% confidence interval, 0.04-0.68; p = .012). In addition, there was a significant difference in the 6-month survival rates with minimal neurologic impairment (hazard ratio, 0.48; 95% confidence interval, 0.29-0.77; p = .003; p <.001 by stratified log-rank test). In the subgroup based on cardiac origin, extracorporeal cardiopulmonary resuscitation also showed benefits for survival discharge (odds ratio, 0.19; 95% confidence interval, 0.04-0.82; p = .026) and 6-month survival with minimal neurologic impairment (hazard ratio, 0.56; 95% confidence interval, 0.33-0.97; p = .038; p = .013 by stratified log-rank test).

The authors conclude that extracorporeal cardiopulmonary resuscitation showed a survival benefit over conventional cardiopulmonary resuscitation in patients who received cardiopulmonary resuscitation for >10 mins after witnessed inhospital arrest, especially in cases of cardiac origin. These results contrast with these recently published French findings in patients receiving ECMO after out-of-hospital cardiac arrest.

Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: A comparison with conventional cardiopulmonary resuscitation
Crit Care Med. 2011 Jan;39(1):1-7