Category Archives: Trauma

Care of severely injured patient

Decompressive craniectomy for high ICP head trauma

Bilateral decompressive craniectomy for severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first line therapies did not improve neurological outcome. This was the Australasian DECRA study.

Emergency Medicine Ireland reviews the paper here.
Another study on decompressive craniectomy, the RESCUE-ICP study, is ongoing, with 306/400 patients now recruited. The RESCUE-ICP investigators make the following comment on the DECRA trial:
“The study showed a significant decrease in intracranial pressure in patients in the surgical group. However, although ICP was lowered by surgery, ICP was not excessively high in the medical group (mean ICP below 24 mmHg pre-randomisation).
RESCUE-ICP differs from DECRA in terms of ICP threshold (25 vs 20 mmHg), timing of surgery (any time after injury vs within 72 hours post-injury), acceptance of contusions and longer follow up (2 years).
The cohort profiles and criteria for entry and randomisation between the DECRA and RESCUE-ICP are therefore very different. Hence the results from the DECRA study should not deter recruitment into RESCUE-ICP. Randomising patients into the RESCUE-ICP study is now even more important!”

Background
It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure.
Methods
From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months.
Results
Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%).
Conclusions
In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes

Decompressive Craniectomy in Diffuse Traumatic Brain Injury
N Engl J Med. 2011 Apr 21;364(16):1493-502

FAST 1 success rates in the field

Three quarters of attempts to place the FAST 1 sternal intraosseous device were successful…

Introduction: Access to the vascular system of the critically ill or injured adult patient is essential for resuscitation. Whether due to trauma or disease, vascular collapse may delay or preclude even experienced medical providers from obtaining standard intravenous (IV) access. Access to the highly vascular intramedullary space of long bones provides a direct link to central circulation. The sternum is a thin bone easily identified by external landmarks that contains well-vascularized marrow. The intraosseous (IO) route rapidly and reliably delivers fluids, blood products, and medications. Resuscitation fluids administered by IV or IO achieve similar transit times to central circulation. The FAST-1 Intraosseous Infusion System is the first FDA-approved mechanical sternal IO device. The objectives of this study were to: (1) determine the success rate of FAST-1 sternal IO device deployment in the prehospital setting; (2) compare the time of successful sternal IO device placement to published data regarding time to IV access; and (3) describe immediate complications of sternal IO use.
Methods: All paramedics in the City of Portsmouth, Virginia were trained to correctly deploy the FAST-1 sternal IO device during a mandatory education session with the study investigators. The study subjects were critically ill or injured adult patients in cardiac arrest treated by paramedics during a one-year period. When a patient was identified as meeting study criteria, the paramedic initiated standard protocols; the FAST-1 sternal IO was substituted for the peripheral IV to establish vascular access. Time to deployment was measured and successful placement was defined as insertion of the needle, with subsequent aspiration and fluid flow without infiltration.
Results: Over the one-year period, paramedics attempted 41 FAST-1 insertions in the pre-hospital setting. Thirty (73%) of these were placed successfully. The mean time to successful placement was 67 seconds for 28 attempts; three of the 31 insertions did not have times recorded by the paramedic. Paramedics listed the problems with FAST-1 insertion, including: (1) difficulty with adhesive after device placement (3 events); (2) failure of needles to retract and operator had to pull the device out of the skin (2 events); and (3) slow flow (1 event). Emergency department physicians noted two events of minor bleeding around the site of device placement.
Conclusion: This is the first study to prospectively evaluate the prehospital use of the FAST-1 sternal IO as a first-line device to obtain vascular access in the critically ill or injured patient. The FAST-1 sternal IO device can be a valuable tool in the paramedic arsenal for the treatment of the critically ill or injured patient. The device may be of particular interest to specialty disaster teams that deploy in austere environments.

Evaluation of success rate and access time for an adult sternal intraosseous device deployed in the prehospital setting
Prehosp Disaster Med 2011;26(2):127–129

Intubation checklist

Perhaps you’ve read the blog post and heard the podcast about the excellent NAP4 airway audit…..now you can start putting the learning points into action with the intubation checklist, developed by the regional trainee-led collaborative ‘RTIC Severn’. Thanks to Dr Tim Bowles for the link:

I’ve used an RSI checklist for both in-and-out of hospital intubations for the last seven years. The beauty of this one is the potential for it to become a standard within and between hospitals, so wherever you work the team will be on the same page when preparing for intubation.
Further details are at http://saferintubation.com

Military vascular injury to the torso is deadly

Outcomes are described for military personnel with vascular injury sustained in Afghanistan and Iraq.

BACKGROUND: Military injuries to named blood vessels are complex limb- and life-threatening wounds that pose significant difficulties in prehospital and surgical management. The aim of this study was to provide a comprehensive description of the epidemiology, treatment and outcome of vascular injury among service personnel deployed on operations in Afghanistan and Iraq.
METHODS: Data from the British Joint Theatre Trauma Registry were combined with hospital records to review all cases of vascular trauma in deployed service personnel over a 5-year interval ending in January 2008.
RESULTS: Of 1203 injured service personnel, 110 sustained injuries to named vessels; 66 of them died before any surgical intervention. All 25 patients who sustained an injury to a named vessel in the abdomen or thorax died; 24 did not survive to undergo surgery and one casualty in extremis underwent a thoracotomy, but died. Six of 17 patients with cervical vascular injuries survived to surgical intervention; two died after surgery. Of 76 patients with extremity vascular injuries, 37 survived to surgery with one postoperative death. Interventions on 38 limbs included 19 damage control procedures (15 primary amputations, 4 vessel ligations) and 19 definitive limb revascularization procedures (11 interposition vein grafts, 8 direct repairs), four of which failed necessitating three amputations.
CONCLUSION: In operable patients with extremity injury, amputation or ligation is often required for damage control and preservation of life. Favourable limb salvage rates are achievable in casualties able to withstand revascularization. Despite marked progress in contemporary battlefield trauma care, torso vascular injury is usually not amenable to surgical intervention.

Outcome after vascular trauma in a deployed military trauma system
Br J Surg. 2011 Feb;98(2):228-34

Salt or sugar on the brain

A meta-analysis suggests hypertonic saline may be more effective at lowering intracranial pressure than mannitol. An accompanying editorial cleverly entitled ‘Salt or sugar on the brain: Does it matter except for taste?’ suggests one reason hypertonic saline (HTS) has not replaced mannitol in clinical practice is that too many different regimens of HTS, in terms of concentration, dose, bolus vs. continuous infusions, and plus or minus supplementation of colloids, have been utilised. Because only 112 patients with 184 episodes of increased ICP were treated with each medication in this meta-analysis, the editorialist agrees with the authors in suggesting a larger randomised study is needed.

OBJECTIVES: Randomized trials have suggested that hypertonic saline solutions may be superior to mannitol for the treatment of elevated intracranial pressure, but their impact on clinical practice has been limited, partly by their small size. We therefore combined their findings in a meta-analysis.
DATA SOURCES: We searched for relevant studies in MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and ISI Web of Knowledge.
STUDY SELECTION: Randomized trials were included if they directly compared equiosmolar doses of hypertonic sodium solutions to mannitol for the treatment of elevated intracranial pressure in human subjects undergoing quantitative intracranial pressure measurement.
DATA EXTRACTION: Two investigators independently reviewed potentially eligible trials and extracted data using a preformed data collection sheet. Disagreements were resolved by consensus or by a third investigator if needed. We collected data on patient demographics, type of intracranial pathology, baseline intracranial pressure, osms per treatment dose, quantitative change in intracranial pressure, and prespecified adverse events. Our primary outcome was the proportion of successfully treated episodes of elevated intracranial pressure.
DATA SYNTHESIS: Five trials comprising 112 patients with 184 episodes of elevated intracranial pressure met our inclusion criteria. In random-effects models, the relative risk of intracranial pressure control was 1.16 (95% confidence interval, 1.00-1.33), and the difference in mean intracranial pressure reduction was 2.0 mm Hg (95% confidence interval, -1.6 to 5.7), with both favoring hypertonic saline over mannitol. A mild degree of heterogeneity was present among the included trials. There were no significant adverse events reported.
CONCLUSIONS: We found that hypertonic saline is more effective than mannitol for the treatment of elevated intracranial pressure. Our meta-analysis is limited by the small number and size of eligible trials, but our findings suggest that hypertonic saline may be superior to the current standard of care and argue for a large, multicenter, randomized trial to definitively establish the first-line medical therapy for intracranial hypertension.

Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: A meta-analysis of randomized clinical trials
Crit Care Med. 2011 Mar;39(3):554-9

Pre-hospital transcranial Doppler

The SAMU (Service d’aide médicale urgente) guys have had a run of interesting pre-hospital publications lately. In this study, one of their ultrasound-wielding physicians travelled in a car to meet comatose head injured patients in a large semi-rural territory area with up to a 120–160-min transport time to a hospital with emergency neurosurgical capability. Pre-hospital transcranial Doppler was done, the results of which appear to have influenced treatment decisions, including the pre-hospital administration of noradrenaline (norepinephrine). I think this study has answered the ‘can it be done?’ question, but further work is needed to determine whether it really makes a difference to outcome.

Background: Investigation of the feasibility and usefulness of pre-hospital transcranial Doppler (TCD) to guide early goal-directed therapy following severe traumatic brain injury (TBI).
Methods: Prospective, observational study of 18 severe TBI patients during pre-hospital medical care. TCD was performed to estimate cerebral perfusion in the field and upon arrival at the Level 1 trauma centre. Specific therapy (mannitol, noradrenaline) aimed at improving cerebral perfusion was initiated if the initial TCD was abnormal (defined by a pulsatility index >1.4 and low diastolic velocity).
Results: Nine patients had a normal initial TCD and nine an abnormal one, without a significant difference between groups in terms of the Glasgow Coma Scale or the mean arterial pressure. Among patients with an abnormal TCD, four presented with an initial areactive bilateral mydriasis. Therapy normalized TCD in five patients, with reversal of the initial mydriasis in two cases. Among these five patients for whom TCD was corrected, only two died within the first 48 h. All four patients for whom the TCD could not be corrected during transport died within 48 h. Only patients with an initial abnormal TCD required emergent neurosurgery (3/9). Mortality at 48 h was significantly higher for patients with an initial abnormal TCD.
Conclusions: Our preliminary study suggests that TCD could be used in pre-hospital care to detect patients whose cerebral perfusion may be impaired.

Pre-hospital transcranial Doppler in severe traumatic brain injury: a pilot study
Acta Anaesthesiol Scand. 2011 Apr;55(4):422-8

Fever in head injury might not be bad

Thanks to Michael McGonigal MD for highlighting this in his excellent Trauma Professional’s Blog:

  • Body temperature does not necessarily reflect brain temperature
  • Low brain temperature was independently associated with a worse outcome in a recent study
  • Brain temperature within the range of 36.5°C to 38°C was associated with a lower probability of death in this study
  • There are no randomised studies on which to base the practice of aggressive cooling of febrile patients with traumatic brain injury

There are few prospective studies reporting the effect of spontaneous temperature changes on outcome after severe traumatic brain injury (TBI). Where studies have been conducted, results are based on systemic rather than brain temperature per se. However, body temperature is not a reliable surrogate for brain temperature. Consequently, the effect of brain temperature changes on outcome in the acute phase after TBI is not clear. Continuous intraparenchymal brain temperature was measured in consecutive admissions of severe TBI patients during the course of the first 5 days of admission to the intensive care unit (ICU). Patients received minimal temperature altering therapy during their ICU stay. Logistic regression was used to explore the relationship between the initial, the 24-h mean, and the 48-h mean brain temperature with outcome for mortality at 30 days and outcome at 3 months. Multifactorial analysis was performed to account for potential confounders. At the 24-h time point, brain temperature within the range of 36.5°C to 38°C was associated with a lower probability of death (10-20%). Brain temperature outside of this range was associated with a higher probability of death and poor 3-month neurological outcome. After adjusting for other predictors of outcome, low brain temperature was independently associated with a worse outcome. Lower brain temperatures (below 37°C) are independently associated with a higher mortality rate after severe TBI. The results suggest that, contrary to current opinion, temperatures within the normal to moderate fever range during the acute post-TBI period do not impose an additional risk for a poor outcome after severe TBI.

The effect of spontaneous alterations in brain temperature on outcome: a prospective observational cohort study in patients with severe traumatic brain injury.
J Neurotrauma. 2010 Dec;27(12):2157-64

Two hands on the jaw for mask ventilation

Elective surgery patients were anaesthetised with propofol with or without fentanyl and had an oropharyngeal airway placed. They were ventilated with pressure control ventilation via facemask held with a single handed traditional ‘EC clamp’ grip and with a two-handed jaw thrust, and compared. The order in which these two techniques were trialled was randomised. All breaths were delivered with a peak pressure of 15 cm H2O, an inspiratory-to-expiratory ratio of 1:1, at a frequency of 15 breaths per minute. Ventilation was more effective with the two handed technique.
Using a self-inflating bag for resuscitation, this would translate to a two-person technique. Of note in methodology however was use of a ‘standard pillow’ and some emphasis on head extension. Perhaps ventilation would have been more effective with either technique if they had applied the golden rule of ear-to-sternal-notch positioning: a must for effective mask ventilation and successful laryngoscopy.

BACKGROUND: Mask ventilation is considered a “basic” skill for airway management. A one-handed “EC-clamp” technique is most often used after induction of anesthesia with a two-handed jaw-thrust technique reserved for difficult cases. Our aim was to directly compare both techniques with the primary outcome of air exchange in the lungs.
METHODS: Forty-two elective surgical patients were mask-ventilated after induction of anesthesia by using a one-handed “EC-clamp” technique and a two-handed jaw-thrust technique during pressure-control ventilation in randomized, crossover fashion. When unresponsive to a jaw thrust, expired tidal volumes were recorded from the expiratory limb of the anesthesia machine each for five consecutive breaths. Inadequate mask ventilation and dead-space ventilation were defined as an average tidal volume less than 4 ml/kg predicted body weight or less than 150 ml/breath, respectively. Differences in minute ventilation and tidal volume between techniques were assessed with the use of a mixed-effects model.
RESULTS: Patients were (mean ± SD) 56 ± 18 yr old with a body mass index of 30 ± 7.1 kg/m. Minute ventilation was 6.32 ± 3.24 l/min with one hand and 7.95 ± 2.70 l/min with two hands. The tidal volume was 6.80 ± 3.10 ml/kg predicted body weight with one hand and 8.60 ± 2.31 ml/kg predicted body weight with two hands. Improvement with two hands was independent of the order used. Inadequate or dead-space ventilation occurred more frequently during use of the one-handed compared with the two-handed technique (14 vs. 5%; P = 0.013).
CONCLUSION: A two-handed jaw-thrust mask technique improves upper airway patency as measured by greater tidal volumes during pressure-controlled ventilation than a one-handed “EC-clamp” technique in the unconscious apneic person.

A Two-handed Jaw-thrust Technique Is Superior to the One-handed “EC-clamp” Technique for Mask Ventilation in the Apneic Unconscious Person
Anesthesiology. 2010 Oct;113(4):873-9

London trauma deaths described

Doctors from Britain’s most established major trauma centre – the Royal London Hospital – have produced mortality data over a four year period of trauma team activations.

 

Introduction Trauma data collection by UK hospitals is non-mandatory and data regarding trauma mortality are deficient. Our aim was to provide a contemporary description of mortality in a maturing trauma-receiving hospital serving an inner-city population.
Methods A prospectively maintained registry was analysed for demographics; injury mechanism; and time, location and cause of death in trauma patients admitted via the Emergency Department between 2004 and 2008.
Results 4986 trauma team activations yielded 4243 complete cases. The number of patients rose from 784 in 2004-2005 to 1400 in 2007/8. 302 (7%) of these died. All-cause mortality fell from 8.8% to 5.8% (p=0.0075). Blunt trauma (predominantly falls from height and road traffic collisions) accounted for 79% of admissions but 87% of mortality. Penetrating trauma accounted for 21% of admissions and 13% of mortality. Most penetrating injury deaths were from stabbing injury (31/40) as opposed to gunshot wounds (8/40). The biggest cause of death was central nervous system injury (47.7%) followed by haemorrhage (26.2%). Penetrating injury death was associated with marked shock and acidosis compared to blunt mechanisms-mean (SD) admission systolic blood pressure 25.4 (45.7) versus 105.5 (60.5) mm Hg; mean (SD) base excess -21.84 (7.2) versus 9.71 (8.45) mmol, respectively. No classical trimodal distribution of death was observed.
Conclusion Despite current focus on death from knife and gun crime, the vast majority of trauma mortality arises from blunt aetiology. Maturation of our systems of care has been associated with a drop in mortality as institutional trauma volumes increase and clinical infrastructure develops.

Deaths from trauma in London—a single centre experience
Emerg Med J 2011;28:305-309

Military trauma care meets standards

Recent recommendations were made regarding trauma care in the UK by the National Confidential Enquiry into Patient Outcome and Death (NCEPOD).
British military physicians at the UK military field hospital, Camp Bastion, Helmand Province, Afghanistan, evaluated their trauma cases against these standards. It is apparent that the trauma care provided to some people in Afghanistan outclasses that delivered within much of the UK.

Military medical teams

Background The National Confidential Enquiry into Patient Outcome and Death (NCEPOD) report on trauma management, published in 2007, defined standards for United Kingdom (UK) hospitals dealing with trauma. This study compared the NCEPOD standards with the performance of a UK military field hospital in Afghanistan. Setting UK military field hospital, Camp Bastion, Helmand Province, Afghanistan.
Materials and methods Data were collected prospectively for all patients fulfilling the trauma team activation criteria during the 3 months of Operation Herrick IXa (from mid October 2008 to mid January 2009) and combined with a retrospective review of prehospital documentation, trauma resuscitation notes, operations notes and transfer notes for these patients.
Results During the study period, there were 226 trauma team activations. Of those patients brought to the medical facility at Camp Bastion by UK assets, 93.7% were accompanied by a doctor with advanced airway skills, although only 6.2% of the patients required such an intervention. Consultants in emergency medicine and anaesthesia were present in 100% of cases and were directly involved (in either leading the team or performing airway management) in 63.5% and 77.6% of cases respectively. Of those patients requiring operative intervention, 98.1% had this performed by a consultant surgeon. Of those patients requiring CT, 93.6% of cases had this performed within 1 h of arrival.
Conclusions Trauma patients presenting to the medical facility at Camp Bastion during Operation Herrick IXa, irrespective of their nationality or background, received a high standard of medical care when compared with the NCEPOD standards

National Confidential Enquiry into Patient Outcome and Death recommendations
Pre-hospital care
All agencies involved in trauma management, including emergency medical services, should be integrated into the clinical governance programmes of a regional trauma service. Airway management in trauma patients is often challenging, and the pre-hospital response for these patients should include someone with the skill to secure the airway, (including the use of rapid sequence intubation), and maintain adequate ventilation.
Hospital reception
A trauma team should be available 24 h a day, 7 days a week. This is an essential part of an organised trauma response system. A consultant must be the team leader for the management of the severely injured patient.
Airway and breathing
The current structure of prehospital management is insufficient. There is a high incidence of failed intubation and a high incidence of patients arriving at hospital with a partially or completely obstructed airway. Change is urgently required to provide a system that reliably provides a clear airway with good oxygenation and control of ventilation. This may be through the provision of personnel with the ability to provide anaesthesia and intubation in the prehospital phase or through the use of alternative airway devices.
Circulation
Trauma laparotomy is extremely challenging and requires consultant presence within the operating theatre. If CT is to be performed, all necessary images should be obtained at the same time, and routine use of head-to-toe scanning is recommended in the adult trauma patient if no indication for immediate intervention exists.
Head injuries
Patients with severe head injury should have a CT of the head performed as soon as possible after admission and within 1 hour of arrival at the hospital. All patients with severe head injury should be transferred to a neurosurgical critical care centre irrespective of the requirement for surgical intervention.
Transfers
There should be standardised transfer documentation of patient details, injuries, results of investigations and management, with records kept at the dispatching and receiving hospitals.
A comparison of civilian (National Confidential Enquiry into Patient Outcome and Death) trauma standards with current practice in a deployed field hospital in Afghanistan.
Emerg Med J 2011;28:310-312