Tag Archives: airway

Sux vs Roc in ED RSI

Suxamethonium and rocuronium were compared in a database of prospectively recorded cases of RSI in the emergency department.
A total of 327 RSI were included in the final analyses. All patients received etomidate as the induction sedative and were successfully intubated. Of these, 113 and 214 intubations were performed using succinylcholine and rocuronium, respectively.

  • The rate of first-attempt intubation success was similar between the succinylcholine and rocuronium groups (72.6% vs. 72.9%, p = 0.95).
  • Median doses used for succinylcholine and rocuronium were 1.65 mg/kg (interquartile range [IQR] = 1.26–1.95 mg/kg) and 1.19 mg/kg (IQR = 1–1.45 mg/kg), respectively.
  • The median dose of etomidate was 0.25 mg/kg in both groups.

In this study succinylcholine and rocuronium were equivalent with regard to first-attempt intubation success in the ED. This finding is consistent with previous investigations that used doses between 0.9 and 1.2 mg/kg and found similar intubating conditions to succinylcholine at these higher doses; subgroup analyses of studies using a lower rocuronium dose of 0.6 to 0.7 mg/kg had a relative risk favoring succinylcholine for excellent intubating conditions.
The low (in my view) rate of first-attempt intubation success in both groups was (72.6% vs. 72.9%), does make one wonder whether the intubating clinicians optimised their strategy for first-pass success.
Comparison of Succinylcholine and Rocuronium for First-attempt Intubation Success in the Emergency Department
Acad Emerg Med. 2011;18:11-14

Bleeding Tracheostomy

Adapted from the UK Intensive Care Society’s ‘Standards for the care of adult patients with a temporary tracheostomy

Bleeding from an established tracheostomy (ie. ‘late bleeding’, as to opposed to peri-operative bleeding that is more common and often benign) may occur because of erosion of blood vessels in and around the stoma site. This is more likely if there has been infection of the stoma site. Such bleeding may settle with conservative management. More worryingly, however, is the prospect of such bleeding being the result of erosion of a major artery in the root of the neck where there has been pressure from the tracheostomy tube itself or the cuff tube. Most commonly, this erosion occurs into the right brachiocephalic artery (also known as the innominate artery), resulting in a tracheo-innominate artery fistula. This situation may be heralded in the preceding hours by a small, apparently insignificant, sentinel bleed. Bleeding from such a fistula will be massive. THIS IS A LIFE-THREATENING EMERGENCY and so decisions need to be rapidly made.

  1. Call for help– senior medical and nursing staff, other health professionals with tracheostomy care skills (e.g. respiratory therapist, physiotherapist).
  2. Clear airway – blood clots may need to be suctioned.
  3. Replace blood products as required
  4. Bleeding may be temporarily reduced or stopped by applying finger pressure to the root of the neck in the sternal notch, or by inflating the tracheostomy tube cuff (if present) with a 50ml syringe of air. This inflation should be done slowly and steadily to inflate the balloon to a maximum volume without bursting it. Depending on the type and size of the tracheostomy tube this may be anywhere between 10 and 35 ml.
  5. Urgent referral for surgical exploration must now be made, if not already done so. In addition to an ENT or maxillofacial surgeon, it may be necessary to get help from a vascular surgeon. Sometimes, the damage can only be repaired utilising cardio-pulmonary bypass, and so a cardiothoracic surgeon may also be needed to help.
  6. Consider palliation – it is well recognised that fatalities occur in this situation, and that this may be the mode of death for some patients with head and neck cancers

Tracheostomy resources

The National Tracheostomy Safety Project at www.tracheostomy.org.uk in the UK aims to allow patients with tracheostomies or laryngectomies to be safely cared for in hospitals.
The site contains a wealth of educational resources of use to the critical care practitioner. For example, have you thought about what do with a laryngectomy patient who presents with dyspnoea, or even apnoea? Remember that although applying oxygen to the face & neck is a default emergency action for all patients with a tracheostomy, these patients cannot be intubated and ventilated through the normal oral route since their tracheostomy is an end stoma – it does not communicate with the mouth:

Compare this with the algorithm for other patients with a tracheostomy, in whom attempts to oxygenate and ventilate, including intubation, can be made in an emergency either from the ‘top end’ (mouth) or via the stoma:

There are also a number of multimedia resources and a link to the UK Intensive Care Society’s Tracheostomy Guidelines

Percutaneous Dilatational Tracheostomy

In ICU, Percutaneous Dilatational Tracheostomy (PDT) is often performed to facilitate weaning from mechanical ventilation, reduce anatomical dead space, avoid laryngeal injury and aid in management of tracheobronchial and pulmonary secretions.
There is still controversy over optimal timing and case selection for PDT. Some organisations have helped to clarify the situation for practicing intensivists.
In 2010 the Australian and New Zealand Intensive Care Society (ANZICS) produced its Percutaneous Dilatational Tracheostomy Consensus Statement, to represent best current practice in Australia and New Zealand.
This can be downloaded from here.

Cuff pressures and tracheal injury

We all intubate patients with cuffed tubes, but we’re far too busy and important to fart around measuring tracheal tube cuff pressures when we’re saving lives right? Surely something the ICU nurses can sort out between ‘eye care’ and swabbing for MRSA.
The modern ‘high volume low pressure’ cuff has certainly led us to worry less about cuff pressures, and in frontline critical care specialties like emergency medicine and pre-hospital and retrieval medicine it’s the last thing on our minds. However we should consider the accumulating pool of evidence that tells us:

  1. Physicians are hopelessly poor at estimating cuff pressures based on palpating the pilot balloon
  2. Cuff pressures are frequently very high
  3. Tracheal mucosal injury can occur even after short term intubation (a few hours)
  4. When the pressure in the cuff exceeds 22 mm Hg, blood flow in the tracheal mucosa begins decreasing
  5. Tracheal mucosal blood flow reduces markedly when the pressure reaches 30 mm Hg
  6. When the pressure in the cuff reaches 50 mm Hg for 15 minutes, ischemic injury to the tracheal mucosa can occur

Patchy hemorrhagic ulceration in tracheal mucosa

A study from China tested the hypothesis that an appropriate tracheal tube cuff (ETTc) pressure even in short procedures would reduce endotracheal intubation–related morbidity. They compared bronchoscopic appearance of tracheal mucosa, and patient symptoms of tracheal injury, in two groups of elective surgical patients anaesthetised and intubated between 120 and 180 minutes: a control group without measuring ETTc pressure, and a study group with ETTc pressure measured and adjusted to a range 15-25 mmHg. The endoscopist was blinded to the study group allocation.

The mean ETTc pressure measured after estimation by palpation of the pilot balloon of the study group was 43 +/- 23.3 mm Hg before adjustment (the highest was 210 mm Hg), and 20+/- 3.1 mm Hg after adjustment (p< 0.001). The incidence of postprocedural sore throat, hoarseness, and blood-streaked expectoration in the control group was significantly higher than in the study group. As the duration of endotracheal intubation increased, the incidence of sore throat and blood-streaked expectoration in the control group increased. The incidence of sore throat in the study group also increased with increasing duration of endotracheal intubation. Fiberoptic bronchoscopy showed that the tracheal mucosa was injured in varying degrees in both groups, but the injury was more severe in the control group than in the study group.
So..time to get a cuff manometer for your ED or helicopter? Perhaps you already have one. What do you think?
Correlations Between Controlled Endotracheal Tube Cuff Pressure and Postprocedural Complications: A Multicenter Study
Anesth Analg. 2010 Nov;111(5):1133-7
Related posts:
Cuff pressure in flight
Paediatric cuff pressures

Intubating spinal patients – the haemodynamics

Laryngoscopy and tracheal intubation transiently increase arterial pressure, heart rate (HR), and circulating catecholamines, in part attributed to reflex sympathetic discharge. In a complete spinal cord injury, the sympathetic nervous system and hence the cardiovascular responses to the intubation may be differentially affected according to the level of injury. Patients with acute quadriplegia often have a low resting arterial pressure due to inappropriate vasodilatation and loss of cardiac inotropy. Moreover, they frequently exhibit arrhythmias, reflex bradycardia, and cardiac arrest, especially during tracheal suction. In the days to weeks after injury, however, the reflex functioning of the lower cord recovers to maintain normal vascular tone. In the chronic stage, peripheral vascular changes and a loss of descending inhibitory control result in paroxysmal hypertension.
Korean investigators KY Yoo and colleagues1 aimed to determine the effect of the level (quadriplegia vs paraplegia) and duration of spinal cord injury on haemodynamic and catecholamine responses to laryngoscopy and tracheal intubation in patients with spinal cord injury. The outcome measures were the changes in systolic arterial pressure (SAP), HR, and catecholamine levels above awake baseline values after intubation.
Patients were divided into two groups: quadriplegia (above C7) and paraplegia (below T5). Each group was divided into six subgroups according to the time elapsed after the injury: <4 weeks (acute), 4 weeks– 1 yr, 1–5, 5–10, 10–20, and >20 yr. Twenty non-disabled patients undergoing surgery requiring tracheal intubation served as controls.
Patients with high-level paraplegia (T1–T4) were excluded because they were few in number and they had previously ‘shown different haemodynamic and catecholamine responses from the other groups2 which refers to work published by the same authors, in which high-paraplegic patients had a more pronounced increase in heart rate compared with other groups. Confusingly the ‘patients who were at increased risk of hyperkalemia after succinylcholine were excluded‘ although this statement appears only in the discussion, not the methods.
Anaesthesia was induced with sodium thiopental 5 mg/kg administered i.v. over 20 s, followed by succinylcholine 1 mg/kg for 5 s, and was followed by direct laryngoscopy and tracheal intubation.
Results were as follows:

  • SAP decreased after the induction of anaesthesia with thiopental in all subjects including the controls (P<0.05).
  • SAP then increased in response to tracheal intubation in the control and paraplegics (P<0.001), whereas it remained unaltered in the quadriplegics regardless of the time since injury.
  • In the paraplegics, the magnitude of maximum increase from baseline values was similar within 10 yr of injury, but was higher thereafter compared with that in the controls (P<0.05).
  • The maximum increase in SAP from baseline values after tracheal intubation was greater in the paraplegics than in the quadriplegics (P<0.0001).
  • An increase in SAP.130% of preinduction baseline values or 160 mm Hg was noted in three (4.2%) of 71 quadriplegics and 94 (65.7%) of 143 paraplegics.
  • The incidence of hypertension was significantly lower and that of hypotension significantly higher in the quadriplegics than in the control.
  • HR increased after induction ofanaesthesia in all groups, but less so in the quadriplegic groups.
  • Although baseline bradycardia was common in the acute quadriplegics, none of them showed further slowing during induction of anaesthesia and tracheal intubation.
  • Tracheal intubation increased plasma norepinephrine concentrations in all subjects except the acute quadriplegics.
  • Epinephrine concentrations were not significantly different between before and after intubation either in the quadriplegics or in the paraplegics, nor were they different between the groups with regard to the duration of injury.
  • The authors summarise: The pressor response was abolished in all quadriplegics regardless of the time elapsed after the injury. In contrast, the chronotropic and catecholamine responses differed over time. The chronotropic response was attenuated and the catecholamine response abolished in the acute quadriplegics. The chronotropic and catecholamine responses were improved in the quadriplegics after 4 weeks since the injury. In the paraplegic patients, cardiovascular responses did not change in the 10 yr after injury and the pressor response was enhanced at 10 yr or more after injury.
    1.Altered cardiovascular responses to tracheal intubation in patients with complete spinal cord injury: relation to time course and affected level
    Br J Anaesth. 2010 Dec;105(6):753-9
    2. Hemodynamic and catecholamine responses to laryngoscopy and tracheal intubation in patients with complete spinal cord injuries.
    Anesthesiolgy 2001; 95: 647–51

    Paramedic RSI in Australia

    A prospective, randomized, controlled trial compared paramedic rapid sequence intubation with hospital intubation in adults with severe traumatic brain injury in four cities in Victoria, Australia. The primary outcome was neurologic outcome at 6 months postinjury.
    Training
    Paramedics already experienced in ‘cold’ intubation (without drugs) undertook an additional 16-hour training program in the theory and practice of RSI, including class time (4 hours), practical intubating experience in the operating room under the supervision of an anesthesiologist (8 hours), and completion of a simulation-based examination (4 hours).
    Methods
    Patients included in the study were those assessed by paramedics on road ambulances as having all the following: evidence of head trauma, Glasgow Coma Score ≤9, age ≥15 years, and ‘intact airway reflexes’, although this is not defined or explained. Patients were excluded if any of the following applied: within 10 minutes of a designated trauma hospital, no intravenous access, allergy to any of the RSI drugs (as stated by relatives or a medical alert bracelet), or transport planned by medical helicopter. Drug therapy for intubation consisted of fentanyl (100μg), midazolam (0.1 mg/kg), and succinylcholine (1.5 mg/kg) administered in rapid succession. Atropine (1.2 mg) was administered for a heart rate <60/min. A minimum 500 mL fluid bolus (lactated Ringers Solution) was administered. A half dose of the sedative drugs was used in patients with hypotension (systolic blood pressure <100 mm Hg) or older age (>60 years).

    Cricoid pressure was applied in all patients. After intubation and confirmation of the position of the endotracheal tube using the presence of the characteristic waveform on a capnograph, patients received a single dose of pancuronium (0.1 mg/kg), and an intravenous infusion of morphine and midazolam at 5 to 10 mg/h each. If intubation was not achieved at the first attempt, or the larynx was not visible, one further attempt at placement of the endotracheal tube over a plastic airway bougie was permitted. If this was unsuccessful, ventilation with oxygen using a bag/mask and an oral airway was commenced and continued until spontaneous respirations returned. Insertion of a laryngeal mask airway was indicated if bag/mask ventilation using an oral airway appeared to provide inadequate ventilation. Cricothyroidotomy was indicated if adequate ventilation could not be achieved with the above interventions. In all patients, a cervical collar was fitted, and hypotension (systolic blood pressure <100 mm Hg) was treated with a 20 mL/kg bolus of lactated Ringers Solution that could be repeated as indicated. Other injuries such as fractures were treated as required. In the hospital emergency department, patients who were not intubated underwent immediate RSI by a physician prior to chest x-ray and computed tomography head scan.
    Follow up
    At 6 months following injury, surviving patients or their next-of-kin were interviewed by telephone using a structured questionnaire and allocated a score from 1 (deceased) to 8 (normal) using the extended Glasgow Outcome Scale (GOSe). The interviewer was blinded to the treatment allocation.
    Statistical power
    A sample size of 312 patients was calculated to achieve 80% power at an alpha error of 0.05. Three hundred twenty-eight patients met the enrollment criteria. Three hundred twelve patients were randomly allocated to either paramedic intubation (160 patients) or hospital intubation (152 patients). A mean Injury Severity Score of 25 indicated that many patients had multiple injuries.
    Success of intubation
    Of the 157 patients administered RSI drugs, intubation was successful in 152 (97%) patients. The remaining 5 patients had esophageal placement of the endotracheal tube recognized immediately on capnography. The endotracheal tube was removed and the patients were managed with an oropharyngeal airway and bag/mask ventilation with oxygen and transported to hospital. There were no cases of unrecognised esophageal intubation on arrival at the emergency department during this study and no patient underwent cricothyroidotomy.
    Outcome
    After admission to hospital, both groups appeared to receive similar rates of neurosurgical interventions, including initial CT scan, urgent craniotomy (if indicated), and monitoring of intracranial pressure in the intensive care unit.
    Favorable neurologic outcome was increased in the paramedic intubation patients (51%) compared with the hospital intubation patients (39%), just reaching statistical significance with P = 0.046. A limitation is that 13 of 312 patients were lost to follow-up and the majority of these were in the hospital intubation group. The authors do point out that the difference in outcomes would no longer be statistically significant whether one more patient had a positive outcome in the treatment group (P = 0.059) or one less in the control group (P = 0.061). The median GOSe was higher in the paramedic intubation group compared with hospital intubation (5 vs. 3), however, this did not reach statistical significance (P = 0.28).
    More patients in the paramedic intubation group suffered prehospital cardiac arrest. There were 10 cardiac arrests prior to hospital arrival in the paramedic RSI group and 2 in the patients allocated to hospital intubation. Further detail on these patients is provided in the paper. The authors state that it is likely that the administration of sedative drugs followed by positive pressure ventilation had adverse hemodynamic consequences in patients with uncontrolled bleeding, and that it is possible that the doses of sedative drugs administered in this study to hemodynamically unstable patients were excessive and consideration should be given to a decreasing the dose of sedation.
    Authors’ conclusions
    The authors overall conclusion is that patients with severe TBI should undergo prehospital intubation using a rapid sequence approach to increase the proportion of patients with favorable neurologic outcome at 6 months postinjury. Further studies to determine the optimal protocol for paramedic rapid sequence intubation that minimize the risk of cardiac arrest should be undertaken.
    Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial.
    Ann Surg. 2010 Dec;252(6):959-65.
    Victorian Ambulance Service protocols are available here, which include their current paramedic RSI protocol

    Newborn mask ventilation

    Seventy doctors and nurses from neonatal units administered positive pressure ventilation to a term newborn manikin using a Neopuff T-piece device. Recordings were made (1) before training, (2) after training in mask handling and (3) 3 weeks later. Leak and obstruction were calculated.
    Median (IQR) leak was 71% (32–95%) before training, 10% (5–37%) directly after training and 15% (4–33%) 3 weeks later (p<0.001). When leak was minimal, gas flow obstruction was observed before, directly after training and 3 weeks later in 46%, 42% and 37% of inflations, respectively.
    The training provided included the following demonstrated mask technique:

    1. Place the manikin’s head in a neutral position and gently roll the mask upwards onto the face from the tip of the chin.
    2. Hold the mask with the two-point-top hold where the thumb and index finger apply balanced pressure to the top flat portion of the mask where the silicone is thickest.
    3. The stem is not held and the fingers should not encroach onto the skirt of the mask.
    4. The thumb and index finger apply an even pressure on top of the mask.
    5. The third, fourth and fifth fingers perform a chin lift with the same pressure upwards as applied by the thumb and index finger downwards.


    In this technique the mask is squeezed onto the face, between the downward thrust of the fingers and upward pull of the chin lift.
    Leak and obstruction with mask ventilation during simulated neonatal resuscitation
    Arch Dis Child Fetal Neonatal Ed 2010;95:F398-F402
    Even with the right technique, adequacy of ventilation can be hard to assess. Principles to bear in mind are:

    • International guidelines recommend that infants with inadequate breathing or bradycardia be given positive pressure ventilation (PPV) via a face mask with a self-inflating bag, flow-inflating bag or T-piece device.
    • Adequacy of ventilation is then judged by assessing the heart rate.
    • However, if the heart rate does not increase, chest wall movements should be assessed to gauge adequacy of ventilation.
    • A human observational study reported a mean VT of 6.5 ml/kg in spontaneous breathing preterm infants in the first minutes of life.
    • When assisted ventilation is required, a peak inflating pressure (PIP) is chosen with the assumption that this will deliver an appropriate VT.
    • However, lung compliance and therefore the PIP required to deliver an appropriate VT vary in the minutes after birth.
    • It is likely that there are even greater differences between infants as the mechanical properties of the lung vary with gestational age and disease states.
    • In addition, many infants breathe during PPV adding to the inconsistency of VT delivered with a set PIP. Therefore, relying on a fixed PIP and subjective assessment of chest wall movement may result in either under- or over-ventilation.
    • Animal studies have shown that PPV with VT >8 ml/kg or inflations with large VTs can damage the lungs.

    In an observational study of actual newborn resuscitations in Melbourne, researchers measured inflating pressures and VT delivered using a respiratory function monitor, and calculated face mask leak. After 60 seconds of PPV, resuscitators were asked to estimate VT and face mask leak. These estimates were compared with measurements taken during the previous 30 s.
    In 20 infants, the median (IQR) expired tidal volume (VTe) delivered was 8.7 ml/kg (5.3–11.3). VTe and mask leak varied widely during each resuscitation and between resuscitators, who were also poor at estimating VT and mask leak.
    Assessment of tidal volume and gas leak during mask ventilation of preterm infants in the delivery room.
    Arch Dis Child Fetal Neonatal Ed. 2010 Nov;95(6):F393-7

    Tracheobronchial Foreign Bodies in Children

    Asphyxiation by an inhaled foreign body is a leading cause of accidental death among children younger than 4 years. A review article examining 12,979 paediatric bronchoscopies made the following observations:
    Epidemiology

    • Most aspirated foreign bodies are organic materials (81%, confidence interval [CI] = 77%-86%), nuts and seeds being the most common.
    • The majority of foreign bodies (88%, CI = 85%-91%) lodge in the bronchial tree, with the remainder catching in the larynx or trachea.
    • The incidence of right-sided foreign bodies (52%, CI = 48%-55%) is higher than that of left-sided foreign bodies (33%, CI = 30%-37%). A small number of objects fragment and lodge in different parts of the airways.
    • A history of a witnessed choking event is highly suggestive of an acute aspiration.
    • A history of cough is highly sensitive for foreign body aspiration but is not very specific. On the other hand, a history of cyanosis or stridor is very specific for foreign body aspiration but is not very sensitive.
    • Signs and symptoms typical in delayed presentations include unilateral decreased breath sounds and rhonchi, persistent cough or wheezing, recurrent or nonresolving pneumonia, or rarely, pneumothorax.
    • Only 11% (CI = 8%-16%) of the foreign bodies were radio-opaque on radiograph, with chest radiographs being normal in 17% of children (CI = 13%-22%).
    • The common radiographic abnormalities included localized emphysema and air trapping, atelectasis, infiltrate, and mediastinal shift.
    • Although rigid bronchoscopy is the traditional diagnostic “gold standard,” the use of computerized tomography, virtual bronchoscopy, and flexible bronchoscopy is increasing.
    • Reported mortality during bronchoscopy is 0.42%.
    • Although asphyxia at presentation or initial emergency bronchoscopy causes some deaths, hypoxic cardiac arrest during retrieval of the object, bronchial rupture, and unspecified intraoperative complications in previously stable patients constitute the majority of in-hospital fatalities.
    • Major complications include severe laryngeal edema or bronchospasm requiring tracheotomy or reintubation, pneumothorax, pneumomediastinum, cardiac arrest, tracheal or bronchial laceration, and hypoxic brain damage (0.96%).
    • Aspiration of gastric contents is not reported.

    End expiratory film: delayed emptying of the left lung suggests local air trapping

    Anaesthetic considerations

    • Preoperative assessment should determine where the aspirated foreign body has lodged, what was aspirated, and when the aspiration occurred (“what, where, when”).
    • The choices of inhaled or IV induction, spontaneous or controlled ventilation, and inhaled or IV maintenance may be individualized to the circumstances. Although several anesthetic techniques are effective for managing children with foreign body aspiration, there is no consensus from the literature as to which technique is optimal.
    • An induction that maintains spontaneous ventilation is commonly practiced to minimize the risk of converting a partial proximal obstruction to a complete obstruction.
    • Controlled ventilation combined with IV drugs and paralysis allows for suitable rigid bronchoscopy conditions and a consistent level of anesthesia.
    • Close communication between the anesthesiologist, bronchoscopist, and assistants is essential.

    The Anesthetic Considerations of Tracheobronchial Foreign Bodies in Children: A Literature Review of 12,979 Cases
    Anesth Analg. 2010 Oct;111(4):1016-25

    Expert not happy with cricoid

    Evidence-based medicine reminds us to beware ‘experts’. However, here’s one self-described expert who talks some sense. Doctor (Doktor?) HJ Priebe from the University Hospital Freiburg in Germany suggests the risk of harm outweighs the risk of benefit from this procedure:
    Despite the lack of evidence for its effectiveness and evidence for numerous deleterious effects, cricoid pressure is still considered a standard of care during rapid sequence induction, and its application is considered mandatory in patients at high risk for gastric regurgitation. However, by using cricoid pressure, we may well be endangering more lives by causing airway problems than we are saving in the hope of preventing pulmonary aspiration. It is dangerous to consider cricoid pressure to be an effective and reliable measure in reducing the risk of pulmonary aspiration and to become complacent about the many factors that contribute to regurgitation and aspiration. Cricoid pressure is not a substitute for optimal patient preparation. Ensuring optimal positioning and a rapid onset of anesthesia and muscle relaxation to decrease the risk of coughing, straining or retching during the induction of anesthesia are likely more important in the prevention of pulmonary aspiration than cricoid pressure.

    ‘At the time of Sellick’s description of the technique of cricoid pressure, morbidity and mortality from pulmonary aspiration during the induction of anesthesia in the surgical population in general, and the obstetric population in particular, were of great concern. At that time, the concept of cricoid pressure was highly attractive. However, during the past 48 years, many aspects of anesthetic management have considerably changed, and knowledge has advanced. By today’s standards, cricoid pressure can no longer be considered an evidence-based practice. This is why more and more anesthetists (including myself) no longer apply cricoid pressure.

    Vielen Dank, Herr Doktor!
    Cricoid pressure: an expert’s opinion
    Minerva Anestesiol 2009;75:710-4 – Full text
    Just as well really, because these guys show many people don’t know how to do it anyway! Cases were identified in which pressure was mistakenly applied to the thyroid cartilage and even the sternocleidomastoid muscles!
    Variable application and misapplication of cricoid pressure
    J Trauma. 2010 Nov;69(5):1182-4