Tag Archives: Guidelines

Cervical spine guideline

The UK College of Emergency Medicine has produced guidelines on the management of cervical spine injury in the ED

Since I have a bit of a ‘thing’ about the obsession with cervical immobilisation, I’m reproducing here an excerpt from the guideline regarding this topic:
In 1998, Hauswald published retrospective data that compared the neurological outcomes of 334 patients with blunt traumatic cervical spinal injury who all had spinal immobilisation performed (New Mexico) with 120 patients with blunt traumatic cervical spinal injury that had no spinal immobilisation performed (Malaya). There was a non-significant increase in neurological disability in the immobilised group. Though this comparison is flawed, the author’s argument that any cord injury from blunt trauma occurs at the time of the impact, that subsequent movement is very unlikely to cause further damage, and that alert patient will develop a position of comfort with muscle spasm protecting the spine appears credible. It is widely accepted that it may be harmful for patients with pre-existing vertebral anatomical abnormalities eg ankylosing spondylitis to have their neck forced into an unnatural position and such patients usually have their neck supported in a position of comfort with or without a collar.
A Cochrane review updated in 2009 by Kwan et al concluded that in the absence of any randomised controlled trials the low incidence of unstable injuries of the cervical spine amongst those immobilised raised the possibility that immobilisation may be associated with a higher morbidity and mortality than non-immobilisation. In a recent literature review, Benger and Blackman concluded that alert, co-operative trauma patients do not require cervical spine immobilisation unless their conscious level deteriorates or they find short-term support of a collar helpful.
The evidence both for and against cervical spine immobilisation is weak. Although Hauswald’s study is intriguing, if we accept a 1-2% prevalence of unstable cervical spine injury following blunt trauma and hypothesise that 1 in 10 patients with unstable cervical spinal injuries would suffer a spinal cord injury as a consequence of non-immobilisation of their neck then only 1 in 500 -1,000 patients would be harmed as a result, which exceeds Hauswald’s study population. There is a need for large randomised multi-centre trials to determine the risk:benefit ratio of neck immobilisation. However, the current practice of cervical spine immobilisation has been so widely adopted and the consequence of causing or exacerbating a spinal injury so catastrophic that such trials may not be supported by ethical committees….Though evidence that the use of cervical collars prevents secondary injury is lacking, no evidence could be found to contradict this statement and it is, therefore, supported.
The guideline does not specify what exactly they mean by cervical spine immobilisation. Clinical practice ranges from one-piece hard or semi-rigid collars (eg. Stifneck) to more comfortable two-piece collars (eg. Philadelphia), tape and sandbags alone, or ‘triple immobilisation’ (collar, sandbags and tape). It is perhaps the obsessive adherence to the latter in the absence of a single piece of supportive evidence that I find bewildering.
Fortunately most Australian practice I’ve witnessed settles on a collar or manual immobilisation, with early application of a two-piece collar in those patients who require prolonged immobilisation.
The College guideline provides a helpful and pragmatic summary of the evidence to date and a digestible list of recommendations that could guide both departmental practice and postgraduat exam revision.
Guideline on the management of alert, adult patients with potential cervical spine injury in the Emergency Department
College of Emergency Medicine 2010 (PDF)

Improved survival with modified CPR

A large randomised controlled trial1 on out-of-hospital cardiac arrest patients compared standard CPR with CPR augmented by two modifications:

  • active compression-decompression using a hand-held suction device to compress the chest. The device is attached to the chest of the patient during CPR and the rescuer actively lifts the chest upwards after each compression, which are done at a rate of 80/min
  • augmented negative intrathoracic pressure using an impedance threshold device, which is a valve that limits passive air entry into the lungs during chest compressions, thereby reducing intrathoracic pressure and increasing blood flow to vital organs

The primary study endpoint was survival to hospital discharge with favourable neurological function.
Funding issues resulted in premature cessation of the study. 47 (6%) of 813 controls survived to hospital discharge with favourable neurological function compared with 75 (9%) of 840 patients in the intervention group (odds ratio 1·58, 95% CI 1·07–2·36; p=0·019]. 74 (9%) of 840 patients survived to 1 year in the intervention group compared with 48 (6%) of 813 controls (p=0·03), with equivalent cognitive skills, disability ratings, and emotional-psychological statuses in both groups. The overall major adverse event rate did not differ between groups, but more patients had pulmonary oedema in the intervention group (94 [11%] of 840) than did controls (62 [7%] of 813; p=0·015).
An accompanying editorial2 points out that previous studies in animal models of cardiac arrest gave reassuring results for both devices individually and when used together, but results from clinical trials in patients have been mixed for each device when used individually:

  • For compression-decompression CPR, a systematic review pooled the existing data for such CPR versus standard CPR in 4162 patients and found no difference in short-term mortality (relative risk 0·98, 95% CI 0·94–1·03) or survival to hospital discharge (0·99, 0·98–1·01). The 2010 CPR guidelines for the USA and Europe do not recommend the use of compression–decompression CPR alone.
  • The most current systematic review for the impedance-threshold device showed a significantly improved early survival (relative risk 1·45, 1·16–1·80), and a short-term improved neurological outcome (2·35, 1·30–4·24); however, improved long- term survival did not reach conventional statistical significance (1·48, 0·91–2·41).

The Resuscitation Outcomes Consortium (ROC) PRIMED study3 showed no survival benefit in 8718 patients randomised to standard CPR with an active or sham impedance-threshold device (the Consortium includes the same investigators as the Lancet paper). This was published as an abstract in Circulation recently.
The editorialist has reservations regarding a change in clinical practice resulting from this new study, partly because the trial was stopped prematurely and enrolment of a larger cohort could have changed the findings, and partly because the open use of both devices might have unintentionally introduced bias into the study. Further validation is recommended.
1. Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial
Lancet 2011;377:301-11
2. Augmented CPR: rescue after the ResQ trial
Lancet. 2011 Jan 22;377:276-7
3. The Resuscitation Outcomes Consortium ROC) PRIMED Impedance Threshold Device (ITD) Cardiac Arrest Trial: A Prospective, Randomized, Double-Blind, Controlled Clinical Trial
Circulation 2010; 122: 2215–26 (abstr)

Algorithm for Body Packers

‘Mules’ or body packers are people who transport illegal drugs by packet ingestion into the gastrointestinal tract. A large study of body packers apprehended by United State Customs officials at JFK International Airport, New York describes experience with body packers and an algorithm for conservative and surgical management.

Of 56 patients requiring admission out of a total of 1250 subjects confirmed to be body packers, 25 patients (45%) required surgical intervention, whereas 31 patients (55%) were successfully managed conservatively.
Diagnosis:

  • Plain abdominal x-ray was diagnostic in 49 patients (88% of all hospitalised patients).
  • Non-contrast CT of the abdomen and pelvis is required if AXR is negative
  • Forty-eight per cent of body packers had positive urine toxicology for illicit substances.


Management:

  • Indications for intervention included:
  • bowel obstruction
  • packet rupture/toxicity
  • delayed progression of packet transit on conservative management.
  • Patients with packets found predominantly in the proximal gastrointestinal tract failed conservative management more frequently than those with packets found in the distal gastrointestinal tract.

Multiple intraoperative manoeuvres were used to remove the foreign bodies:

  • gastrotomy
  • enterotomy
  • colotomy.

Wound infection was the most common complication and is associated with distal enterotomy and colotomy.
The authors recommend a confirmatory radiological study to demonstrate complete clearance of packets
Establishment of a definitive protocol for the diagnosis and management of body packers (drug mules).
Emerg Med J 2011;28:98-10

Percutaneous Dilatational Tracheostomy

In ICU, Percutaneous Dilatational Tracheostomy (PDT) is often performed to facilitate weaning from mechanical ventilation, reduce anatomical dead space, avoid laryngeal injury and aid in management of tracheobronchial and pulmonary secretions.
There is still controversy over optimal timing and case selection for PDT. Some organisations have helped to clarify the situation for practicing intensivists.
In 2010 the Australian and New Zealand Intensive Care Society (ANZICS) produced its Percutaneous Dilatational Tracheostomy Consensus Statement, to represent best current practice in Australia and New Zealand.
This can be downloaded from here.

H1N1 Update from UK Intensive Care

H1N1 Update 16 December 2010 sent from the UK Intensive Care Society
As many of you will already be aware, the predicted second wave of swine flu seems to becoming a reality. The HPA have received information that there has been a rise in the number of confirmed H1N1 cases and has restarted regular teleconferences to discuss the current situation and to disseminate the latest advice and information. The initial teleconference was held last Friday and the first question asked was how many cases have units seen. Although the total numbers were not high, the fact that there are confirmed cases throughout the UK gave support to the decision that hospitals should prepare for an increase in the numbers.
Subsequent updates have confirmed that the case numbers are rising and although not all patients admitted to ICUs with a suspected diagnosis of H1N1 have required mechanical ventilation or had H1N1 confirmed. As of Wednesday this week the numbers of H1N1 related ICU cases had risen to 140.  An additional concern is that the number of cases with probable H1N1 referred for ECMO is now 13 and this has resulted in a policy that there should be support for all the centers in the UK who can provide ECMO.
It is still too early to predict what the level escalation is going to be required, but there are real concerns that the combination of adverse weather conditions, the current financial restrictions in the NHS, and an H1N1 peak could place ICUs in a more seriously challenging situation than occurred in the previous outbreak.
For this reason, it is recommended that clinicians should once again have a low threshold for considering the possibility of H1N1 in patients who are referred to intensive care. Trusts should reconvene regular meetings to plan for any necessary expansion of critical care services. It is important that staff have up to date training in the use of personal protection equipment.  One of the most important points learned from the first outbreak was that early antiviral therapy can reduce the need for mechanical ventilation and it is recommended that any patients admitted to hospital with a history and symptoms suggestive of an influenza-like illness should be given antiviral therapy.
The following points were made in the HPA–led teleconference on 10 December:

  • be vigilant: have a low threshold for considering the diagnosis.
  • start antivirals whenever there is a suspicion of flu (oseltamivir 75or 150 mg bd po).
  • In patients with resistance or not tolerating NG medication, there is an IV preparation which is currently undergoing clinical trial. GSK produces it (zanamavir) and may provide it on patient-name compassionate grounds.
  • Use ARDSnet ventilation especially for those with normal lung compliance.
  • Consider HFO for those with poor compliance
  • Fluid restrict patients
  • Consider referral for ECMO early if conventional ventilation is failing. ECMO beds are occupied almost all occupied by ‘flu patients and elective surgery has been curtailed to accomodate them. Surge funding has been agreed for extra ECMO. In cases where conventional ventilation is failing and there are no other options, patients should be referred to Glenfield before seven days of MV.
  • HPA adviced has not changed with respect to infection control measures; these can be found here:http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/@dh/@en/@ps/documents/digitalasset/dh_110899.pdf
  • The RCoA site still has an adult practice note from last year which will be updated
  • The HPA link to seasonal flu can be found here:http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/SeasonalInfluenza/Guidelines/
  • There will be advice re pregnant women after discussion with the RCOG
  • In some cases, URT specimens may be negative in severe cases and LRT samples may be needed for the diagnosis.
  • Point of care testing may have inadequate  sensitivity for this strain of H1N1

The current rate is 21.5/100,000.
We aim to provide updates on the ICS website and copy of this document is available to download via http://www.ics.ac.uk/ under ‘Latest News – H1N1 Latest News’.
Update by the Executive Committee of the Intensive Care Society.
Sent from the email of:
Pauline Kemp
Head of Secretariat

UK Military Clinical Guidelines

In the United Kingdom, The Academic Department of Military Emergency Medicine at the Royal Centre for Defence Medicine produces Clinical Guidelines for Operations on behalf of Surgeon General under the direction of Defence Professor of Emergency Medicine.
These guidelines, last updated in May 2010, are available on line here:

**UPDATE JUNE 2011** I have received correspondence that this document is now out of date. The link is however still active and the document makes for interesting reading.

Massive haemorrhage guideline

The Association of Anaesthetists of Great Britain and Ireland has published guidelines on the management of massive haemorrhage. Their summary:

  1. Hospitals must have a major haemorrhage protocol in place and this should include clinical, laboratory and logistic responses.
  2. Immediate control of obvious bleeding is of paramount importance (pressure, tourniquet, haemostatic dressings).
  3. The major haemorrhage protocol must be mobilised immediately when a massive haemorrhage situation is declared.
  4. A fibrinogen < 1 g.l)1 or a prothrombin time (PT) and activated partial thromboplastin time (aPTT) of > 1.5 times normal represents established haemostatic failure and is predictive of microvascular bleeding. Early infusion of fresh frozen plasma (FFP; 15 ml.kg)1) should be used to prevent this occurring if a senior clinician anticipates a massive haemorrhage.
  5. Established coagulopathy will require more than 15 ml.kg)1 of FFP to correct. The most effective way to achieve fibrinogen replacement rapidly is by giving fibrinogen concentrate or cryoprecipitate if fibrinogen is unavailable.
  6. 1:1:1 red cell:FFP:platelet regimens, as used by the military, are reserved for the most severely traumatised patients.
  7. A minimum target platelet count of 75 · 109.l)1 is appropriate in this clinical situation.
  8. Group-specific blood can be issued without performing an antibody screen because patients will have minimal circulating antibodies. O negative blood should only be used if blood is needed immediately.
  9. In hospitals where the need to treat massive haemorrhage is frequent, the use of locally developed shock packs may be helpful.
  10. Standard venous thromboprophylaxis should be commenced as soon as possible after haemostasis has been secured as patients develop a prothrombotic state following massive haemorrhage.

Blood transfusion and the anaesthetist: management of massive haemorrhage – full document

AED Use in Children Now Includes Infants

From the new 2010 resuscitation guidelines:
For attempted defibrillation of children 1 to 8 years of age with an AED, the rescuer should use a pediatric dose-attenuator system if one is available. If the rescuer provides CPR to a child in cardiac arrest and does not have an AED with a pediatric dose-attenuator system, the rescuer should use a standard AED. For infants (<1 year of age), a manual defibrillator is preferred. If a manual defibrillator is not available, an AED with pediatric dose attenuation is desirable. If neither is available, an AED without a dose attenuator may be used.

Summary: Adult AEDs may be used in all infants and children if there is no child-specific alternative
Highlights of the 2010 American Heart Association Guidelines for CPR and ECC