The challenge of competence in the face of rarity
by Dr Cliff Reid FCEM, and Dr Mike Clancy FCEM
This article is to be published in Emergency Medicine Journal (EMJ), and is reproduced here with permission of the BMJ Group.
Emergency physicians require competence in procedures which are required to preserve life, limb viability, or sight, and whose urgency cannot await referral to another specialist.
Some procedures that fit this description, such as tracheal intubation after neuromuscular blockade in a hypoxaemic patient with trismus, or placement of an intercostal catheter in a patient with a tension pneumothorax, are required sufficiently frequently in elective clinical practice that competence can be acquired simply by training in emergency department, intensive care, or operating room environments.
Other procedures, such as resuscitative thoracotomy, may be required so infrequently that the first time a clinician encounters a patient requiring such an intervention may be after the completion of specialist training, or in the absence of colleagues with prior experience in the technique.
Some techniques that might be considered limb or life saving may be too technically complex to acquire outside specialist surgical training programs. Examples are damage control laparotomy and limb fasciotomy. One could however argue that these are rarely too urgent to await arrival of the appropriate specialist.
The procedures which might fit the description of a time‐critical life, limb, or sight saving procedure in which it is technically feasible to acquire competence within or alongside an emergency medicine residency, and that cannot await another specialist, include:
- limb amputation for the entrapped casualty with life-threatening injuries;
- escharotomy for a burns patient with compromised ventilation or limb perfusion;
Defining competence for emergency physicians
A major challenge is the acquisition of competence in the face of such clinical rarity. One medical definition of competence is ‘the knowledge, skill, attitude or combination of these, that enables one to effectively perform the activities of a particular occupation or role to the standards expected’[1]; in essence the ability to perform to a standard, but where are these standards defined?
If we look to the curricula which are used to assess specialist emergency physicians in several English-speaking nations, all the procedures in the short list above are included, although no one single nation’s curriculum includes the entire list (Table 1).
So an emergency physician is expected to be able to conduct these procedures, and a competent emergency physician effectively performs them to the ‘standards’ expected. It appears then that the question is not whether emergency physicians should perform them, but to what standard should they be trained? Only then can the optimal approach to training be decided.
There are convincing arguments that even after minimal training the performance of these procedures by emergency physicians is justifiable:
- All the abovementioned interventions could be considered to carry 100% morbidity or mortality if not performed, with some chance of benefit whose magnitude depends on the timeliness of intervention. In some cases that risk is quantifiable: cardiac arrest due to penetrating thoracic trauma has 100% mortality if untreated, but an 18% survival to discharge rate, with a high rate of neurologically intact survivors, if performed by prehospital emergency medicine doctors in the field according to defined indications[2] and using a simple operative procedure[3]. In this extreme clinical example, no further harm to the patient can result from the procedure but a chance of supreme benefit exists. Thus, the ethical requirements of beneficence and non-maleficence are both met even in the circumstance of very limited training for the procedure. It is hard to conceive of many other circumstances in medicine where the benefit:harm ratio approaches infinity.
- The procedures in question are technically straightforward and can be executed without specialist equipment in non-operating room environments. These factors appear to be underappreciated by non-emergency specialist opponents of emergency physician-provided thoracotomy whose practice and experience is likely to be predominantly operating room-based[4].
- Some of the procedures are recommended or mandated by official guidelines[5], raising the possibility of medicolegal consequences of failure to perform them.
- The procedures are time-critical and cannot await the arrival of an alternative specialist not already present. Simple pragmatism dictates that emergency physicians be trained to provide the necessary interventions.
The challenge of training
So how does one best train for these procedures? High volume trauma experience provided by a registrar term with the London Helicopter Emergency Medical Service or at a South African trauma centre will be an option for a very limited subset of trainees. Alternative training can be provided using simulation, animal labs, and cadaver labs, without risk to patients or requiring dedicated surgical specialty attachments.
Simulation manikins are not yet available for all the procedures mentioned, and lack realistic operable tissue. Human cadaver labs and live animal training bring administrative, legal, ethical and financial challenges that may be prohibitive to time and cash‐limited training schemes, or be less available to the ‘already trained’ providers in existing consultant posts. Even excellent focused cadaver-based courses such as the Royal College of Surgeons’ Definitive Surgical Trauma Skills course[6] may not be appropriate for the emergency medicine environment: on such a course one of the authors (CR) was publicly castigated by a cardiothoracic surgeon instructor for inexpert suture technique during the resuscitative thoracotomy workshop, despite the former having successfully performed the procedure on several occasions ‘in the field’ without need of elaborate needlework.
An additional training challenge is that of metacompetence: the decision and ability to apply the competence at the right time. In the light of the relative technical simplicity of the practical procedures under discussion, this may indeed be the greatest challenge. Both authors can recount sad tales of colleagues failing to provide indicated life-saving interventions despite being technically capable of intervening. Reasons for reticence include ‘I haven’t been properly trained’, and ‘I wouldn’t feel supported if it went wrong’.
Where do we go from here?
We have presented clinical, ethical, practical, and medicolegal arguments in favour of emergency physicians providing these procedures. Collectively, the emergency medicine curricula of English-speaking nations mandate competence in them. The relative technical simplicity and overwhelming benefit:harm equation obviate the need to match the competence of a surgical subspecialist; these factors suggest training can be limited in time and cost as long as the metacompetences of ‘decision to act and knowing when to act’ are taught, simulated, and tested.
While we should capitalise on the technical expertise of surgical colleagues in the training situation, it is imperative that emergency physicians appreciative of the emergency department environment and equipment are directly involved in translating this training to emergency medicine practice. The rarity of the situations requiring these procedures requires that training should be revisited on a regular basis, preferably in the context of local departmental simulation in order to optimise equipment and teamwork preparation.
Finally, the College of Emergency Medicine needs to make it clear to its members and fellows that these procedures lie unquestionably within the domain of emergency medicine, and that emergency physicians are supported in performing them to the best of their abilities with limited training when circumstances dictate that this in the best interests of preserving a patient’s life, limb, or sight.
References
1. British Medical Association. Competency-based assessment discussion paper for consultants, May 2008. http://www.bma.org.uk/employmentandcontracts/doctors_performance/1_app raisal/CompetencyBasedAssessment.jsp Accessed 22nd March 2012
2. Davies GE, Lockey DJ. Thirteen Survivors of Prehospital Thoracotomy for Penetrating Trauma: A Prehospital Physician‐Performed Resuscitation Procedure That Can Yield Good Results. J Trauma. 2011;70(5):E75-8
3. Wise D, Davies G, Coats T, et al. Emergency thoracotomy: “how to do it”. Emerg Med J. 2005; 22(1):22–24 Free full text
4. Civil I. Emergency room thoracotomy: has availability triumphed over advisability in the care of trauma patients in Australasia? Emerg Med Australas. 2010;22(4):257‐9
5. Soar J, Perkins GD, Abbas G, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 8. Cardiac arrest in special circumstances: Electrolyte abnormalities, poisoning, drowning, accidental hypothermia, hyperthermia, asthma, anaphylaxis, cardiac surgery, trauma, pregnancy, electrocution. Resuscitation. 2010;81(10):1400-33 Full text
6. Definitive Surgical Trauma Skills course. http://www.rcseng.ac.uk/courses/course-search/dsts.html Accessed 22nd March 2012
7. http://www.collemergencymed.ac.uk/Training-Exams/Curriculum/Curriculum%20from%20August%202010/ Accessed 22nd March 2012
8. http://www.eusem.org/cms/assets/1/pdf/european_curriculum_for_em-aug09-djw.pdf accessed 17 May 2012
9. The Model of the Clinical Practice of Emergency Medicine http://www.abem.org/PUBLIC/portal/alias__Rainbow/lang__en-%C2%AD%20US/tabID__4223/DesktopDefault.aspx Accessed 22nd March 2012
10. http://rcpsc.medical.org/residency/certification/objectives/emergmed_e.pdf Accessed 22nd March 2012
11. http://www.acem.org.au/media/publications/15_Fellowship_Curriculum.pdf accessed 17 May 2012
12. http://www.collegemedsa.ac.za/Documents/doc_173.pdf accessed 17 May 2012
Life, limb and sight-saving procedures-the challenge of competence in the face of rarity
Emerg Med J. 2012 Jul 16. [Epub ahead of print]