Tag Archives: Trauma

Exsanguinating cardiac arrest not always fatal

The British Military has developed a reputation for aggressive pre-hospital critical care including (but not limited to) the use of blood products and tourniquets, and coordinated field hospital trauma care. They now report the outcomes for patients with traumatic cardiac arrest, mainly from improvised explosive devices. Of 52 patients, 14 (27%) demonstrated return of spontaneous circulation (ROSC), of whom four (8%) survived to hospital discharge with a neurologically good recovery. Resuscitative thoracotomy (RT) was performed on 12 patients (8 in the ED), including all four survivors. RT enabled open-chest CPR, release of pericardial tamponade, lung resection and compression of the descending thoracic aorta for haemorrhage control.
No patients who arrested in the field survived, although one of the neurologically well-recovered survivors arrested during transport to hospital and was in cardiac arrest for 24 minutes. The authors propose this individual’s survival was in part due to ‘the high level of care that he received during retrieval, including haemorrhage control, tracheal intubation and transfusion of blood products‘.
Asystole was universally associated with death but agonal / bradycardic rhythms were not. In keeping with other studies, cardiac activity on ultrasound was associated with ROSC.


AIM: To determine the characteristics of military traumatic cardiorespiratory arrest (TCRA), and to identify factors associated with successful resuscitation.

METHODS: Data was collected prospectively for adult casualties suffering TCRA presenting to a military field hospital in Helmand Province, Afghanistan between 29 November 2009 and 13 June 2010.

RESULTS: Data was available for 52 patients meeting the inclusion criteria. The mean age (range) was 25 (18-36) years. The principal mechanism of injury was improvised explosive device (IED) explosion, the lower limbs were the most common sites of injury and exsanguination was the most common cause of arrest. Fourteen (27%) patients exhibited ROSC and four (8%) survived to discharge. All survivors achieved a good neurological recovery by Glasgow Outcome Scale. Three survivors had arrested due to exsanguination and one had arrested due to pericardial tamponade. All survivors had arrested after commencing transport to hospital and the longest duration of arrest associated with survival was 24min. All survivors demonstrated PEA rhythms on ECG during arrest. When performed, 6/24 patients had ultrasound evidence of cardiac activity during arrest; all six with cardiac activity subsequently exhibited ROSC and two survived to hospital discharge.

CONCLUSION: Overall rates of survival from military TCRA were similar to published civilian data, despite military TCRA victims presenting with high Injury Severity Scores and exsanguination due to blast and fragmentation injuries. Factors associated with successful resuscitation included arrest beginning after transport to hospital, the presence of electrical activity on ECG, and the presence of cardiac movement on ultrasound examination.

Outcomes following military traumatic cardiorespiratory arrest: A prospective observational study
Resuscitation. 2011 Sep;82(9):1194-7

Trauma mortality and systolic BP

Here’s some further evidence that a ‘lowish’ – as opposed to a low – systolic blood pressure is a reason to be vigilant in trauma. In this study, it was BP measurement in the ED (rather than pre-hospital) that was assessed:


Introduction: Non-invasive systolic blood pressure (SBP) measurement is often used in triaging trauma patients. Traditionally, SBP < 90 mmHg has represented the threshold for hypotension, but recent studies have suggested redefining hypotension as SBP < 110 mmHg. This study aims to examine the association of SBP with mortality in blunt trauma patients.
Methods: This is an analysis of prospectively recorded data from adult (≥16 years) blunt trauma patients. Included patients presented to hospitals belonging to the Trauma Audit and Research Network (TARN) between 2000 and 2009. The primary outcome was the association of SBP and mortality rates at 30 days. Multivariate logistic regression models were used to adjust for the influence of age, gender, Injury Severity Score (ISS) and Glasgow Coma Score (GCS) on mortality.

Results: 47,927 eligible patients presented to TARN hospitals during the study period. Sample demographics were: median age: 51.1 years (IQR=32.8–67.4); male 60% (n=28,694); median ISS 9 (IQR = 8–10); median GCS 15 (IQR = 15–15); and median SBP 135 mmHg (IQR = 120–152). We identified SBP < 110 mmHg as a cut off for hypotension, where a significant increase in mortality was observed. Mor- tality rates doubled at <100 mmHg, tripled at <90 mmHg and were 5- to 6-fold at <70 mmHg, irrespective of age.
Conclusion: We recommend triaging adult blunt trauma patients with a SBP < 110 mmHg to resuscitation areas within dedicated trauma units for close monitoring and appropriate management.

Systolic blood pressure below 110mmHg is associated with increased mortality in blunt major trauma patients: Multicentre cohort study
Resuscitation. 2011 Sep;82(9):1202-7

Score to predict traumatic coagulopathy

Acute traumatic coagulopathy (ATC) is present in up to 25% of major trauma patients by the time they arrive in hospital. A predictive tool called the coagulopathy of severe trauma (COAST) score was retrospectively derived and then prospectively validated in major trauma patients in the state of Victoria, Australia. The definition of ATC was INR > 1.5 (1.0–1.3) or aPTT of > 60 s (25–38 s) on hospital presentation.
The study claims that a subgroup of patients with acute traumatic coagulopathy can be accurately identified based on simple observations in the pre-hospital phase or immediately on presentation to the ED, and that this could improve the feasibility of prospective interventional studies. Perhaps this will lead on to evaluation of pre-hospital tranexamic acid or even blood products?
At the cutoff score of ≥3, 40 coagulopathic patients would have been missed with 60 patients correctly predicted. The authors argue that while the low sensitivity of the score missed these coagulopathic patients, they had significantly better outcomes (and contained a significantly higher proportion of patients with isolated severe head injury).


Introduction: The inability to accurately predict acute traumatic coagulopathy (ATC) has been a key factor in the low level of evidence guiding its management. The aim of this study was to develop a tool to accurately identify patients with ATC using pre-hospital variables without the use of pathology or radiological testing.

Methods: Retrospective data from the trauma registry on major trauma patients were used to identify vari- ables independently associated with coagulopathy. These variables were clinically evaluated to develop a scoring system to predict ATC, which was prospectively validated in the same setting.

Results: There were 1680 major trauma patients in the derivation dataset, with 151 patients being coagulopathic. Pre-hospital variables independently associated with ATC were entrapment (OR 1.85; 95% CI: 1.12–3.06), temperature (OR 0.60; 95% CI: 0.60–0.72), systolic blood pressure (OR 0.99; 95% CI: 0.98–0.99), abdominal or pelvic content injury (OR 2.0; 95% CI: 1.27–3.12) and pre-hospital chest decompression (OR 4.99; 2.77–8.99). The COAST score was developed, scoring points for entrapment, temperature <35 ◦ C, systolic blood pressure <100 mm Hg, abdominal or pelvic content injury and chest decompression. Prospectively validated using 1225 major trauma patients, a COAST score of ≥3 had a specificity of 96.4% with a sensitivity of 60.0%, with an area under the receiver operating characteristic curve of 0.83 (0.78–0.88).
Conclusions: The COAST score accurately identified a group of patients with ATC using pre-hospital obser- vations. This predictive tool can be used to select patients for inclusion into prospective studies examining management options for ATC. Mortality in these patients is high, potentially improving feasibility of outcome studies.

Surgeons and trauma teams

There can be issues associated with calling surgeons to trauma team activations in the ED, including interruption to the surgeon’s other duties, and the absence of anything useful for the surgeon to do, when most blunt trauma patients are managed by emergency physicians, intensivists, and orthopaedic surgeons, with a growing input from interventional radiologists. At one American major trauma centre for example, emergency operation by a trauma surgeon for blunt trauma averages once every 7 weeks for adults and less than once every 3 years for children1.
While there are many surgeons who are passionate about trauma care and excellent in the non-operative aspects of trauma management, there are probably more who would welcome measures to reduce the need to attend ED for all trauma team activations. Of course no triage tool is perfect: they will always have to trade sensitivity against specificity. One such tool from the Loma Linda University Medical Center uses the simple criteria of penetrating trauma, systolic blood pressure, and heart rate. These pertain to pre-hospital measurement and therefore the surgeon can be activated prior to patient arrival.
This triage tool performed better than the American College of Surgeons’ “major resuscitation” trauma triage criteria2:


STUDY OBJECTIVE: Trauma centers use “secondary triage” to determine the necessity of trauma surgeon involvement. A clinical decision rule, which includes penetrating injury, an initial systolic blood pressure less than 100 mm Hg, or an initial pulse rate greater than 100 beats/min, was developed to predict which trauma patients require emergency operative intervention or emergency procedural intervention (cricothyroidotomy or thoracotomy) in the emergency department. Our goal was to validate this rule in an adult trauma population and to compare it with the American College of Surgeons’ major resuscitation criteria.

METHODS: We used Level I trauma center registry data from September 1, 1995, through November 30, 2008. Outcomes were confirmed with blinded abstractors. Sensitivity, specificity, and 95% confidence intervals (CIs) were calculated.

RESULTS: Our patient sample included 20,872 individuals. The median Injury Severity Score was 9 (interquartile range 4 to 16), 15.3% of patients had penetrating injuries, 13.5% had a systolic blood pressure less than 100 mm Hg, and 32.5% had a pulse rate greater than 100 beats/min. Emergency operative intervention or procedural intervention was required in 1,099 patients (5.3%; 95% CI 5.0% to 5.6%). The sensitivities and specificities of the rule and the major resuscitation criteria for predicting emergency operative intervention or emergency procedural intervention were 95.6% (95% CI 94.3% to 96.8%) and 56.1% (95% CI 55.4% to 56.8%) and 85.5% (95% CI 83.3% to 87.5%) and 80.9% (95% CI 80.3% to 81.4%), respectively.

CONCLUSION: This new rule was more sensitive for predicting the need for emergency operative intervention or emergency procedural intervention directly compared with the American College of Surgeons’ major resuscitation criteria, which may improve the effectiveness and efficiency of trauma triage.

Although not mentioned in the abstract, the study also included assessment of refinements of the Loma Linda Rule based on different cutoffs of heart rate and blood pressure. Once such refinement that included penetrating injury to the torso and less conservative physiological criteria (systolic blood pressure <90 mm Hg and pulse rate >110 beats/min) resulted in a slightly lower sensitivity, with a dramatic improvement in specificity compared with the original Loma Linda Rule.
A good point is made by Steve Green in his accompanying editoral3:


A possibility is that emergency physicians supervising out-of-hospital radio calls can predict the need for surgeon presence just as accurately (or perhaps more accurately) as any of these rules. After all, judgment is the time-tested mechanism by which emergency physicians summon all other consultants for all other conditions.

Unfortunately for many UK and Australasian centres, the challenge that remains is not deciding when to call the surgeon, but getting one when you do call, preferable one who is not committed to an elective operating list and one who has some training and experience in trauma surgery.
1. Clinical decision rules for secondary trauma triage: predictors of emergency operative management.
Ann Emerg Med. 2006 Feb;47(2):135
2. Validation and refinement of a rule to predict emergency intervention in adult trauma patients
Ann Emerg Med. 2011 Aug;58(2):164-71
3. Trauma is occasionally a surgical disease: how can we best predict when?
Ann Emerg Med. 2011 Aug;58(2):172-177

CRASH-2 and head injury

The overall effect of the antifibrinolytic drug tranexamic acid on outcome from major trauma was assessed in the CRASH-2 trial, reported here and here. Its effect on a nested cohort of 270 patients from the trial who had traumatic brain injury has now been published1.
Previous evaluation in nontraumatic subarachnoid haemorrhage patients showed tranexamic acid to be associated with cerebral ischaemia, whereas in CRASH-2 (in which a lower dose of tranexamic acid was used) there was a trend to fewer ischaemic lesions as well as smaller haematoma growth and decreased mortality. None of these outcomes were statistically significant so further research is warranted.
An accompanying editorial2 states:

…the CRASH-2 study also justifies a re-evaluation of the possible benefit of low dose short term TXA in patients with other types of intracranial haemorrhage. Many patients with aneurysmal subarachnoid haemorrhage still have to wait for one or two days before the aneurysm is occluded. In addition, at least 30% of patients with spontaneous intracerebral haemorrhage experience substantial haematoma growth in the first 24 hours after the onset of the haemorrhage. As well as the CRASH-2 trial we therefore need new trials investigating short course low dose TXA in patients with aneurysmal subarachnoid haemorrhage and intracerebral haemorrhage.

It looks like considerable enthusiasm for this drug will be around for a while. I look forward to more outcome data, particularly in regard to this challenging group of patients with traumatic and non-traumatic intracranial bleeding.


OBJECTIVE: To assess the effect of tranexamic acid (which reduces bleeding in surgical patients and reduces mortality due to bleeding in trauma patients) on intracranial haemorrhage in patients with traumatic brain injury.

METHODS: A nested, randomised, placebo controlled trial. All investigators were masked to treatment allocation. All analyses were by intention to treat. Patients 270 adult trauma patients with, or at risk of, significant extracranial bleeding within 8 hours of injury, who also had traumatic brain injury.

INTERVENTIONS: Patients randomly allocated to tranexamic acid (loading dose 1 g over 10 minutes, then infusion of 1 g over 8 hours) or matching placebo.

MAIN OUTCOME MEASURES: Intracranial haemorrhage growth (measured by computed tomography) between hospital admission and then 24-48 hours later, with adjustment for Glasgow coma score, age, time from injury to the scans, and initial haemorrhage volume.

RESULTS: Of the 133 patients allocated to tranexamic acid and 137 allocated to placebo, 123 (92%) and 126 (92%) respectively provided information on the primary outcome. All patients provided information on clinical outcomes. The mean total haemorrhage growth was 5.9 ml (SD 26.8) and 8.1 mL (SD 29.2) in the tranexamic acid and placebo groups respectively (adjusted difference -3.8 mL (95% confidence interval -11.5 to 3.9)). New focal cerebral ischaemic lesions occurred in 6 (5%) patients in the tranexamic acid group versus 12 (9%) in the placebo group (adjusted odds ratio 0.51 (95% confidence interval 0.18 to 1.44)). There were 14 (11%) deaths in the tranexamic acid group and 24 (18%) in the placebo group (adjusted odds ratio 0.47 (0.21 to 1.04)).

CONCLUSIONS: This trial shows that neither moderate benefits nor moderate harmful effects of tranexamic acid in patients with traumatic brain injury can be excluded. However, the analysis provides grounds for further clinical trials evaluating the effect of tranexamic acid in this population

1. Effect of tranexamic acid in traumatic brain injury: a nested randomised, placebo controlled trial (CRASH-2 Intracranial Bleeding Study)
BMJ. 2011 Jul 1;343:d379 (free text available)
2. Tranexamic acid for traumatic brain injury
BMJ. 2011 Jul 1;343:d3958

Better than FFP in trauma?

Replacement of clotting factors in bleeding trauma patients seems to be of benefit, but are coagulation factor concentrates safer than fresh frozen plasma? This retrospective study suggests they might be; prospective studies are recommended.

INTRODUCTION: Clinical observations together with recent research highlighted the role of coagulopathy in acute trauma care and early aggressive treatment has been shown to reduce mortality.
METHODS: Datasets from severely injured and bleeding patients with established coagulopathy upon emergency room (ER) arrival from two retrospective trauma databases, (i) TR-DGU (Germany) and (ii) Innsbruck Trauma Databank/ITB (Austria), that had received two different strategies of coagulopathy management during initial resuscitation, (i) fresh frozen plasma (FFP) without coagulation factor concentrates, and (ii) coagulation factor concentrates (fibrinogen and/or prothrombin complex concentrates) without FFP, were compared for morbidity, mortality and transfusion requirements using a matched-pair analysis approach.
RESULTS: There were no major differences in basic characteristics and physiological variables upon ER admission between the two cohorts that were matched. ITB patients had received substantially less packed red blood cell (pRBC) concentrates within the first 6h after admission (median 1.0 (IQR(25-75) 0-3) vs 7.5 (IQR(25-75) 4-12) units; p
CONCLUSION: Although there was no difference in overall mortality between both groups, significant differences with regard to morbidity and need for allogenic transfusion provide a signal supporting the management of acute post-traumatic coagulopathy with coagulation factor concentrates rather than with traditional FFP transfusions. Prospective and randomised clinical trials with sufficient patient numbers based upon this strategy are advocated.

The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion.
Injury. 2011 Jul;42(7):697-701

Open book fractures and ultrasound

For me, this is one of those ‘why didn’t I think of that?!’ studies… extending the FAST scan to measure pubic symphyseal widening to detect open-book pelvic fractures. A pubic symphysis width of 25 mm was considered positive; the authors state that this width is considered diagnostic for anterior-posterior compression fracture of the pelvis in the non-pregnant patient.
Since only four of the 23 patients studied had radiological widening, the authors’ conclusions make sense: Further study with a larger cohort is needed to confirm this technique’s validity for diagnosing PS widening in APC pelvic fractures.
A reasonable question might be: ‘so what?’, especially if pelvic binders are routinely applied to polytrauma patients and radiographs are rapidly obtained. However as a retrieval medicine doctor working in remote and austere environments I wonder whether this could be useful to us. Perhaps if combined with this intervention?

BACKGROUND: The focused abdominal sonography in trauma (FAST) examination is a routine component of the initial work-up of trauma patients. However, it does not identify patients with retroperitoneal hemorrhage associated with significant pelvic trauma. A wide pubic symphysis (PS) is indicative of an open book pelvic fracture and a high risk of retroperitoneal bleeding.

STUDY OBJECTIVES: We hypothesized that an ultrasound image of the PS as part of the FAST examination (FAST-PS) would be an accurate method to determine if pubic symphysis diastasis was present.

METHODS: This is a comparative study of a diagnostic test on a convenience sample of 23 trauma patients at a Level 1 Trauma Center. The PS was measured sonographically in the Emergency Department (ED) and post-mortem (PM) at the State Medical Examiner. The ultrasound (US) measurements were then compared with PS width on anterior-posterior pelvis radiograph.

RESULTS: Twenty-three trauma patients were evaluated with both plain radiographs and US (11 PM, 12 ED). Four patients had radiographic PS widening (3 PM, 1 ED) and 19 patients had radiographically normal PS width; all were correctly identified with US. US measurements were compared with plain X-ray study by Bland-Altman plot. With one exception, US measurements were within 2 standard deviations of the radiographic measurements and, therefore, have excellent agreement. The only exception was a patient with pubic symphysis wider than the US probe.

CONCLUSION: Bedside ultrasound examination may be able to identify pubic symphysis widening in trauma patients. This potentially could lead to faster application of a pelvic binder and tamponade of bleeding.

Ultrasonographic determination of pubic symphyseal widening in trauma: the FAST-PS study
J Emerg Med. 2011 May;40(5):528-33

E-FAST for pneumothorax

Some further evidence of the superiority of ultrasound over chest x-ray for the detection of pneumothorax (although it’s not perfect):

INTRODUCTION: Early identification of pneumothorax is crucial to reduce the mortality in critically injured patients. The objective of our study is to investigate the utility of surgeon performed extended focused assessment with sonography for trauma (EFAST) in the diagnosis of pneumothorax.
METHODS: We prospectively analysed 204 trauma patients in our level I trauma center over a period of 12 (06/2007-05/2008) months in whom EFAST was performed. The patients’ demographics, type of injury, clinical examination findings (decreased air entry), CXR, EFAST and CT scan findings were entered into the data base. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) were calculated.
RESULTS: Of 204 patients (mean age–43.01+/-19.5 years, sex–male 152, female 52) 21 (10.3%) patients had pneumothorax. Of 21 patients who had pneumothorax 12 were due to blunt trauma and 9 were due to penetrating trauma. The diagnosis of pneumothorax in 204 patients demonstrated the following: clinical examination was positive in 17 patients (true positive in 13/21, 62%; 4 were false positive and 8 were false negative), CXR was positive in 16 (true positive in 15/19, 79%; 1 false positive, 4 missed and 2 CXR not performed before chest tube) patients and EFAST was positive in 21 patients (20 were true positive [95.2%], 1 false positive and 1 false negative). In diagnosing pneumothorax EFAST has significantly higher sensitivity compared to the CXR (P=0.02).
CONCLUSIONS: Surgeon performed trauma room extended FAST is simple and has higher sensitivity compared to the chest X-ray and clinical examination in detecting pneumothorax.

Extended focused assessment with sonography for trauma (EFAST) in the diagnosis of pneumothorax: experience at a community based level I trauma center
Injury. 2011 May;42(5):511-4

How about pre-hospital tranexamic acid?

The CRASH 2 trial showed improved outcomes in trauma from the administration of the antifibrinolytic drug tranexamic acid. A further analysis of the data has shown that benefit was only seen in CRASH-2 when tranexamic acid was administered within 3 hours of injury1.
An accompanying editorial2 makes the following interesting points:

  • Acute traumatic coagulopathy is a hyperacute process in which systemic fibrinolysis releases D-dimers that are detectable within 30 min of injury.
  • Those severely injured patients who develop acute coagulopathy are much more likely to die and to die early.
  • Once fully activated, fibrinolysis has been shown to continue unabated until endogenous antifibrinolytic elements are restored.
  • The earlier that tranexamic acid is administered, the more likely it might be to prevent full activation of fibrinolysis.
  • Hospital massive transfusion protocols incorporate fresh frozen plasma that contains all the endogenous antifibrinolytic elements in plasma and so the place for tranexamic acid in high income countries with such protocols is unclear.
  • The best place for tranexamic acid in developed trauma systems might actually be in the prehospital environment, where trauma bypass policies have extended prehospital times and the administration of plasma is uncommon and often impractical.

BACKGROUND: The aim of the CRASH-2 trial was to assess the effects of early administration of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage. Tranexamic acid significantly reduced all-cause mortality. Because tranexamic acid is thought to exert its effect through inhibition of fibrinolysis, we undertook exploratory analyses of its effect on death due to bleeding.

METHODS: The CRASH-2 trial was undertaken in 274 hospitals in 40 countries. 20,211 adult trauma patients with, or at risk of, significant bleeding were randomly assigned within 8 h of injury to either tranexamic acid (loading dose 1 g over 10 min followed by infusion of 1 g over 8 h) or placebo. Patients were randomly assigned by selection of the lowest numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Both participants and study staff (site investigators and trial coordinating centre staff ) were masked to treatment allocation. We examined the effect of tranexamic acid on death due to bleeding according to time to treatment, severity of haemorrhage as assessed by systolic blood pressure, Glasgow coma score (GCS), and type of injury. All analyses were by intention to treat. The trial is registered as ISRCTN86750102, ClinicalTrials.gov NCT00375258, and South African Clinical Trial Register/Department of Health DOH-27-0607-1919.

FINDINGS: 10,096 patients were allocated to tranexamic acid and 10,115 to placebo, of whom 10,060 and 10,067, respectively, were analysed. 1063 deaths (35%) were due to bleeding. We recorded strong evidence that the effect of tranexamic acid on death due to bleeding varied according to the time from injury to treatment (test for interaction p<0.0001). Early treatment (≤1 h from injury) significantly reduced the risk of death due to bleeding (198/3747 [5.3%] events in tranexamic acid group vs 286/3704 [7.7%] in placebo group; relative risk [RR] 0.68, 95% CI 0.57-0.82; p<0.0001). Treatment given between 1 and 3 h also reduced the risk of death due to bleeding (147/3037 [4.8%] vs 184/2996 [6.1%]; RR 0.79, 0.64-0.97; p=0.03). Treatment given after 3 h seemed to increase the risk of death due to bleeding (144/3272 [4.4%] vs 103/3362 [3.1%]; RR 1.44, 1.12-1.84; p=0.004). We recorded no evidence that the effect of tranexamic acid on death due to bleeding varied by systolic blood pressure, Glasgow coma score, or type of injury.

INTERPRETATION: Tranexamic acid should be given as early as possible to bleeding trauma patients. For trauma patients admitted late after injury, tranexamic acid is less effective and could be harmful.

1. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial
Lancet. 2011 Mar 26;377(9771):1096-101
2. Tranexamic acid for trauma
Lancet. 2011 Mar 26;377(9771):1052-4

UK Radiology guidelines for trauma


The Royal College of Radiologists in the UK has published a guideline document to set standards related to diagnostic and interventional radiology for use by major trauma centres (MTCs) and trauma units (TUs). The standards are:

  1. The trauma team leader is in overall charge in acute care
  2. Protocol-driven imaging and intervention must be available and delivered by experienced staff. Acute care for SIPs must be consultant delivered
  3. MDCT should be adjacent to, or in, the emergency room
  4. Digital radiography must be available in the emergency room
  5. If there is an early decision to request MDCT, FAST and DR should not cause any delay
  6. MRI must be available with safe access for the SIP
  7. A CT request in the trauma setting should comply with the Ionising Radiation (Medical Exposure) Regulations 2000 (IR(ME)R) justification regulations like any other request for imaging involving ionising radiation
  8. There should be clear written protocols for MDCT preparation and transfer to the scan room
  9. Whole-body contrast-enhanced MDCT is the default imaging procedure of choice in the SIP. Imaging protocols should be clearly defined and uniform across a regional trauma network
  10. Future planning and design of emergency rooms should concentrate on increasing the numbers of SIPs stable enough for MDCT and intervention
  11. The primary survey report should be issued immediately to the trauma team leader
  12. On-call consultant radiologists should provide the final report on the SIP within one hour of MDCT image acquisition
  13. On-call consultant radiologists must have teleradiology facilities at home that allow accurate reports to be issued within one hour of MDCT image acquisition
  14. IR facilities should be co-located to the emergency department
  15. Angiographic facilities and endovascular theatres in MTCs should be safe environments for SIPs and should be of theatre standard
  16. Agreed written transfer protocols between the emergency department and imaging/interventional facilities internally or externally must be available
  17. IR trauma teams should be in place within 60 minutes of the patient’s admission or 30 minutes of referral
  18. Any deficiency in consumable equipment should be reported at the debriefing and be the subject of an incident report

Some interesting snippets include:
IV access
Right antecubital access is preferred for contrast administration (left-sided injections compromise interpretation of mediastinal vasculature). However, if arm vein access is not possible and a central line is in situ, it should be of a type that can accept 4 ml contrast/ second via a power injector. This might require local negotiation with emergency department doctors beforehand

Pelvic fracture
If a pelvic fracture is suspected, a temporary pelvic stabilisation (wrap, binder and so on) should be applied before MDCT.
Limb fractures
Rapid immobilisation such as air splints. Only immediately limb conserving manipulations/splinting should be performed prior to CT.
Urinary catheter
All significantly injured patients without obvious contraindications should be catheterised unless this would delay transfer to CT. The catheter should be clamped prior to MDCT.
Standards of practice and guidance for trauma radiology in severely injured patients
Royal College of Radiologists – Full Text Link