Category Archives: Kids

Acute Paediatrics

FAST in kids has low sensitivity

The abstract says it all – don’t use FAST to rule out significant abdominal free fluid in kids with blunt abdominal trauma. Fine as a rule-in test (for free fluid) though.

Objectives:  Focused assessment of sonography in trauma (FAST) has been shown useful to detect clinically significant hemoperitoneum in adults, but not in children. The objectives were to determine test characteristics for clinically important intraperitoneal free fluid (FF) in pediatric blunt abdominal trauma (BAT) using computed tomography (CT) or surgery as criterion reference and, second, to determine the test characteristics of FAST to detect any amount of intraperitoneal FF as detected by CT.

Methods:  This was a prospective observational study of consecutive children (0–17 years) who required trauma team activation for BAT and received either CT or laparotomy between 2004 and 2007. Experienced physicians performed and interpreted FAST. Clinically important FF was defined as moderate or greater amount of intraperitoneal FF per the radiologist CT report or surgery.

Results:  The study enrolled 431 patients, excluded 74, and analyzed data on 357. For the first objective, 23 patients had significant hemoperitoneum (22 on CT and one at surgery). Twelve of the 23 had true-positive FAST (sensitivity = 52%; 95% confidence interval [CI] = 31% to 73%). FAST was true negative in 321 of 334 (specificity = 96%; 95% CI = 93% to 98%). Twelve of 25 patients with positive FAST had significant FF on CT (positive predictive value [PPV] = 48%; 95% CI = 28% to 69%). Of 332 patients with negative FAST, 321 had no significant fluid on CT (negative predictive value [NPV] = 97%; 95% CI = 94% to 98%). Positive likelihood ratio (LR) for FF was 13.4 (95% CI = 6.9 to 26.0) while the negative LR was 0.50 (95% CI = 0.32 to 0.76). Accuracy was 93% (333 of 357, 95% CI = 90% to 96%). For the second objective, test characteristics were as follows: sensitivity = 20% (95% CI = 13% to 30%), specificity = 98% (95% CI = 95% to 99%), PPV = 76% (95% CI = 54% to 90%), NPV = 78% (95% CI = 73% to 82%), positive LR = 9.0 (95% CI = 3.7 to 21.8), negative LR = 0.81 (95% CI = 0.7 to 0.9), and accuracy = 78% (277 of 357, 95% CI = 73% to 82%).

Conclusion:  In this population of children with BAT, FAST has a low sensitivity for clinically important FF but has high specificity. A positive FAST suggests hemoperitoneum and abdominal injury, while a negative FAST aids little in decision-making

Test characteristics of focused assessment of sonography for trauma for clinically significant abdominal free fluid in pediatric blunt abdominal trauma
Acad Emerg Med. 2011 May;18(5):477-82

Infant CPR causing rib fractures

An increase in rib fractures was observed at autopsy in infants who had undergone CPR, which is temporally related to the introduction of guidelines stressing the hand-encircling two-thumb method of CPR and compression depths of 1/3 – 1/2 the anteroposterior diameter of the chest, which has been shown in previous studies to produce higher coronary perfusion pressures and more consistently correct depth and force of compression than the “two-finger” technique.
Previous posts here have reported a CT scan-based mathematical modelling study that suggested compressing to 1/3 anteroposterior chest wall diameter should provide a superior ejection fraction to 1/4 depth and should generate less risk for over-compression than 1/2 AP compression depth, and another post described a small case series of 6 PICU patients requiring CPR for cardiac arrest due to primary cardiac disease in which blood pressure as measured by an arterial line increased when the depth of chest compression was increased from one third to one half of the chest wall diameter (using the hand-encircling method).
What should we do about this? I think the take-home message is to be mindful of the risk of rib fractures and to avoid over-compression, but to follow the guidelines. Another valuable point was made by the authors:

“Regardless of the reason for the increased incidence, the possibility of CPR-related rib fractures needs to be seriously considered in the evaluation of any infant presenting with rib fractures, when there is a history of CPR, so as not to misinterpret the finding as evidence of non-accidental/inflicted injury.”

An infant NOT requiring CPR. And a happy doctor.

OBJECTIVE: A recent increase in the number of infants presenting at autopsy with rib fractures associated with cardio-pulmonary resuscitation (CPR) precipitated a study to determine whether such a phenomenon was related to recent revision of paediatric resuscitation guidelines.

METHODS: We conducted a review of autopsy reports from 1997 to 2008 on 571 infants who had CPR performed prior to death.

RESULTS: Analysis of the study population revealed CPR-related rib fractures in 19 infants (3.3%), 14 of whom died in the 2006-2008 period. The difference in annual frequency of CPR-related fractures between the periods before and after revision of paediatric CPR guidelines was statistically highly significant.

CONCLUSIONS: The findings indicate that CPR-associated rib fractures have become more frequent in infants since changes in CPR techniques were introduced in 2005. This has important implications for both clinicians and pathologists in their assessment of rib fractures in this patient population.

Increased incidence of CPR-related rib fractures in infants-Is it related to changes in CPR technique?
Resuscitation. 2011 May;82(5):545-8

Single bag for adults and kids

A nice idea – using a single adult self-inflating bag for the resuscitation of adult and paediatric patients, marked to identify compression points that deliver specific tidal volume ranges. Might be useful in situations where equipment needs to be minimised, such as military or pre-hospital settings.

AIM: To overcome limitations of inaccurate tidal volume (TV) delivery by conventional selfinflating paediatric and adult bags during paediatric and adolescent resuscitation, we designed a novel target volume marked bag (TVMB) with four compression points marked on an adult bag surface. The aim of this study was to evaluate the TVMB in delivering preset TV.

METHODS: Fifty-three subjects (28 doctors, 17 nurses, 8 paramedics) participated in this simulation trial. TVMB, paediatric bag and adult bag were connected to a gas flow analyser for measuring TV and peak inspiratory pressure (PIP). In a random cross-over setting, participants delivered 10 ventilations using the adult bag, paediatric bag or TVMB in each of four target volume ranges (100-200ml, 200-300ml, 300-400ml, 400-500ml). We compared TV and PIP for the adult bag, paediatric bag and TVMB in each subject.

RESULTS: Compared with the paediatric bag, TVMB showed higher rates of accurate TV delivery in the 200-300ml target volume range (87-90% versus 32-35%; p<0.05). Compared with the adult bag, TVMB showed higher rates of accurate TV delivery in all target volume ranges (75-90% versus 45-50%; p<0.05). The frequency of too high or low TV delivery was higher with the adult bag than TVMB (20-30% versus 0-5%; p<0.05). There was no significant difference in PIP between the paediatric bag and TVMB (within 5cm H(2)O; p<0.05).

CONCLUSIONS: TVMB could deliver accurate TV in various target volume ranges for paediatric and adolescent resuscitation.

Resuscitation. 2011 Jun;82(6):749-54

Fluid Bolus in African Children with Severe Infection

Much discussion has already taken place in the blogosphere about the FEAST study of fluid resuscitation in septic children. Although a well conducted study, its external validity to Western populations is dubious, particularly in view of the proportion of malaria in the cohorts studied.

In the words of my emergency physician colleague Dr Fiona Rae from Wrexham, UK:

“Interesting. As they say, a completely different population in a resource limited setting so it doesn’t translate to UK practice. Majority of these children had malaria and if I read correctly 32% had Hb < 5g/dl. Also 20-40mls/kg is quite a lot of fluid these days as an initial bolus other than in the sort of severely shocked patients that they seemed to exclude. Their overall mortality also seems to be lower than expected for this population.

If you work in an environment without ITU and a high incidence of malaria then its a useful study. They are not the sort of children I see in my resus room with shock though.”
Nicely put Fi!
You can also read an analysis of this study on Dr G’s blog – where you can find other posts on critical care and emergency medicine.

Background
The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established.
Methods
We randomly assigned children with severe febrile illness and impaired perfusion to receive boluses of 20 to 40 ml of 5% albumin solution (albumin-bolus group) or 0.9% saline solution (saline-bolus group) per kilogram of body weight or no bolus (control group) at the time of admission to a hospital in Uganda, Kenya, or Tanzania (stratum A); children with severe hypotension were randomly assigned to one of the bolus groups only (stratum B). Children with malnutrition or gastroenteritis were excluded. The primary end point was 48-hour mortality; secondary end points included pulmonary edema, increased intracranial pressure, and mortality or neurologic sequelae at 4 weeks.
Results
The data and safety monitoring committee recommended halting recruitment after 3141 of the projected 3600 children in stratum A were enrolled. Malaria status (57% overall) and clinical severity were similar across groups. The 48-hour mortality was 10.6% (111 of 1050 children), 10.5% (110 of 1047 children), and 7.3% (76 of 1044 children) in the albumin-bolus, saline-bolus, and control groups, respectively (relative risk for saline bolus vs. control, 1.44; 95% confidence interval [CI], 1.09 to 1.90; P=0.01; relative risk for albumin bolus vs. saline bolus, 1.01; 95% CI, 0.78 to 1.29; P=0.96; and relative risk for any bolus vs. control, 1.45; 95% CI, 1.13 to 1.86; P=0.003). The 4-week mortality was 12.2%, 12.0%, and 8.7% in the three groups, respectively (P=0.004 for the comparison of bolus with control). Neurologic sequelae occurred in 2.2%, 1.9%, and 2.0% of the children in the respective groups (P=0.92), and pulmonary edema or increased intracranial pressure occurred in 2.6%, 2.2%, and 1.7% (P=0.17), respectively. In stratum B, 69% of the children (9 of 13) in the albumin-bolus group and 56% (9 of 16) in the saline-bolus group died (P=0.45). The results were consistent across centers and across subgroups according to the severity of shock and status with respect to malaria, coma, sepsis, acidosis, and severe anemia.
Conclusions
Fluid boluses significantly increased 48-hour mortality in critically ill children with impaired perfusion in these resource-limited settings in Africa.

Mortality after Fluid Bolus in African Children with Severe Infection
NEJM May 26, 2011 Full text available

Intubation checklist

Perhaps you’ve read the blog post and heard the podcast about the excellent NAP4 airway audit…..now you can start putting the learning points into action with the intubation checklist, developed by the regional trainee-led collaborative ‘RTIC Severn’. Thanks to Dr Tim Bowles for the link:

I’ve used an RSI checklist for both in-and-out of hospital intubations for the last seven years. The beauty of this one is the potential for it to become a standard within and between hospitals, so wherever you work the team will be on the same page when preparing for intubation.
Further details are at http://saferintubation.com

Intravenous lipid emulsion as antidote

Emergency physician intensivist Grant Cave and colleagues review the literature on intravenous lipid emulsion (ILE) therapy for human poisoning in this month’s Emergency Medicine Australasia

Intravenous lipid emulsion (ILE) has been demonstrated to be effective in amelioration of cardiovascular and central nervous system sequelae of local-anaesthetic and non-local-anaesthetic drug toxicity in animal models. Sequestration of lipophilic toxins to an expanded plasma lipid phase is credited as the predominant beneficial mechanism of action of ILE. Systematic review of published human experience is however lacking. We determined to report a comprehensive literature search of all human reports of ILE application in drug poisoning. Forty-two cases of ILE use (19 local-anaesthetic, 23 non-local-anaesthetic) were identified, with anecdotal reports of successful resuscitation from cardiovascular collapse and central nervous system depression associated with ILE administration in lipophilic toxin overdose. Although significant heterogeneity was observed in both agents of intoxication, and reported outcomes; case report data suggest a possible benefit of ILE in potentially life-threatening cardio-toxicity from bupivacaine, mepivacaine, ropivacaine, haloperidol, tricyclic antidepressants, lipophilic beta blockers and calcium channel blockers. Further controlled study and systematic evaluation of human cases is required to define the clinical role of ILE in acute poisonings.

Review article: Intravenous lipid emulsion as antidote: A summary of published human experience.
Emerg Med Australas. 2011 Apr;23(2):123-41
An editorial by Guy Weinberg, the researcher who first demonstrated the effect of ILE on bupivacaine toxicity, has some interesting observations and recommendations:

  • Each of the first six case reports of lipid resuscitation from local anaesthetic systemic toxicity (LAST) were noted to have one or more of either underlying ischaemia, conduction defect or low cardiac output. For patients in these susceptible groups, reduce the dose of local anaesthetics used in nerve blocks
  • There is laboratory evidence that epinephrine (adrenaline) can impair lipid resuscitation. Weinberg believes that epinephrine should be used only in small doses, if at all, in treating LAST
  • In bupivacaine toxicity, use it early rather than later, as outcomes are likely to be better when intervention occurs before tissue perfusion has been compromised and too much pressor therapy has been used

Weinberg informs us that more examples of lipid resuscitation can be found at the educational website: http://www.lipidrescue.org/ and the registry site: http://www.lipidregistry.org/.
Intravenous lipid emulsion: Why wait to save a life?
Emerg Med Australas. 2011 Apr;23(2):113-5
In his editorial Weinberg refers to the review article by Jamaty et al, whose suggested regimen included 20% ILE 1.5mL/kg bolus then 0.25–0.5 mL/kg/min for 30–60 min.

OBJECTIVE: To assess the evidence regarding the efficacy and safety of intravenous fat emulsion (IFE) in the management of poisoned patients.
METHODS: We performed a systematic review of the literature with no time or language restriction. The electronic databases were searched from their inception until June 1, 2009 (Medline, EMBASE, ISI web of science, Biological abstract, LILACS, ChemIndex, Toxnet, and Proquest). We also examined the references of identified articles and the gray literature. The target interventions eligible for inclusion were administration of any IFE before, during, or after poisoning in human or animals. All types of studies were reviewed. Eligibility for inclusion and study quality scores, based on criteria by Jadad and the STROBE statement, were evaluated by independent investigators. The primary outcome was mortality. Secondary outcomes included neurologic, hemodynamic, and electrocardiographic variables, as well as adverse effects.
RESULTS: Of the 938 publications identified by the search strategies, 74 met the inclusion criteria. We identified 23 animal trials, 50 human, and 1 animal case reports. Overall, the quality of evidence was weak and significant heterogeneity prevented data pooling. Available data suggest some benefits of IFE in bupivacaine, verapamil, chlorpromazine, and some tricyclic antidepressants and beta-blockers toxicity. No trial assessed the safety of IFE in the treatment of acute poisoning.
CONCLUSION: The evidence for the efficacy of IFE in reducing mortality and improving hemodynamic, electrocardiographic, and neurological parameters in the poisoned patients is solely based on animal studies and human case reports. The safety of IFE has not been established.

Lipid emulsions in the treatment of acute poisoning: a systematic review of human and animal studies.
Clin Toxicol (Phila). 2010 Jan;48(1):1-27
The Guidelines from the Association of Anaesthetists of Great Britain and Ireland, also endorsed by the Australian and New Zealand College of Anaesthetists, outline the dose and indications for ILE in LAST. The full guideline can be accessed by clicking the image below:

Colorimetric CO2 detectors and newborns

Colorimetric CO2 detectors may fail to indicate successful tracheal tube placement in adults in certain circumstances, such as low cardiac output states, and waveform capnography is considered the gold standard. We now have data that demonstrate their inadequacy for neonatal intubation. Ideally, waveform devices should be used by all professionals who intubate patients – from paramedics to neonatologists.

AIM: Clinical assessment and end-tidal CO(2) (ETCO(2)) detectors are routinely used to verify endotracheal tube (ETT) placement. However, ETCO(2) detectors may mislead clinicians by failing to identify correct placement under a variety of conditions. A flow sensor measures gas flow in and out of an ETT. We reviewed video recordings of neonatal resuscitations to compare a colorimetric CO(2) detector (Pedi-Cap®) with flow sensor recordings for assessing ETT placement.
METHODS: We reviewed recordings of infants <32 weeks gestation born between February 2007 and January 2010. Airway pressures and gas flow were recorded with a respiratory function monitor. Video recording were used (i) to identify infants who were intubated in the delivery room and (ii) to observe colour change of the ETCO(2) detector. Flow sensor recordings were used to confirm whether the tube was in the trachea or not. RESULTS: Of the 210 infants recorded, 44 infants were intubated in the delivery room. Data from 77 intubation attempts were analysed. In 35 intubations of 20 infants both a PediCap® and flow sensor were available for analysis. In 21 (60%) intubations, both methods correctly identified successful ETT placement and in 3 (9%) both indicated the ETT was not in the trachea. In the remaining 11 (31%) intubations the PediCap® failed to change colour despite the flow wave indicating correct ETT placement.
CONCLUSION: Colorimetric CO(2) detectors may mislead clinicians intubating very preterm infants in the delivery room. They may fail to change colour in spite of correct tube placement in up to one third of the cases.

Assessment of flow waves and colorimetric CO2 detector for endotracheal tube placement during neonatal resuscitation
Resuscitation. 2011 Mar;82(3):307-12

Salt or sugar on the brain

A meta-analysis suggests hypertonic saline may be more effective at lowering intracranial pressure than mannitol. An accompanying editorial cleverly entitled ‘Salt or sugar on the brain: Does it matter except for taste?’ suggests one reason hypertonic saline (HTS) has not replaced mannitol in clinical practice is that too many different regimens of HTS, in terms of concentration, dose, bolus vs. continuous infusions, and plus or minus supplementation of colloids, have been utilised. Because only 112 patients with 184 episodes of increased ICP were treated with each medication in this meta-analysis, the editorialist agrees with the authors in suggesting a larger randomised study is needed.

OBJECTIVES: Randomized trials have suggested that hypertonic saline solutions may be superior to mannitol for the treatment of elevated intracranial pressure, but their impact on clinical practice has been limited, partly by their small size. We therefore combined their findings in a meta-analysis.
DATA SOURCES: We searched for relevant studies in MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and ISI Web of Knowledge.
STUDY SELECTION: Randomized trials were included if they directly compared equiosmolar doses of hypertonic sodium solutions to mannitol for the treatment of elevated intracranial pressure in human subjects undergoing quantitative intracranial pressure measurement.
DATA EXTRACTION: Two investigators independently reviewed potentially eligible trials and extracted data using a preformed data collection sheet. Disagreements were resolved by consensus or by a third investigator if needed. We collected data on patient demographics, type of intracranial pathology, baseline intracranial pressure, osms per treatment dose, quantitative change in intracranial pressure, and prespecified adverse events. Our primary outcome was the proportion of successfully treated episodes of elevated intracranial pressure.
DATA SYNTHESIS: Five trials comprising 112 patients with 184 episodes of elevated intracranial pressure met our inclusion criteria. In random-effects models, the relative risk of intracranial pressure control was 1.16 (95% confidence interval, 1.00-1.33), and the difference in mean intracranial pressure reduction was 2.0 mm Hg (95% confidence interval, -1.6 to 5.7), with both favoring hypertonic saline over mannitol. A mild degree of heterogeneity was present among the included trials. There were no significant adverse events reported.
CONCLUSIONS: We found that hypertonic saline is more effective than mannitol for the treatment of elevated intracranial pressure. Our meta-analysis is limited by the small number and size of eligible trials, but our findings suggest that hypertonic saline may be superior to the current standard of care and argue for a large, multicenter, randomized trial to definitively establish the first-line medical therapy for intracranial hypertension.

Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: A meta-analysis of randomized clinical trials
Crit Care Med. 2011 Mar;39(3):554-9

Cardiac arrest drugs and pupils

Although not predictive immediately post-cardiac arrest in the emergency department, dilated unreactive pupils two or three days later on the ICU may indicate a hopeless prognosis. We know from our experience with adrenaline (epinephrine) infusions that this drug does not prevent pupils from reacting to light, but what about atropine?

A letter by Dr Sophie MacDougall-Davis in Resuscitation describes a 66 year old male patient admitted to the ICU after an intraoperative PEA arrest during which he received 3 mg intravenous atropine. Post arrest and post anaesthesia he was awake with no neurological deficit, but eight hours after the cardiac arrest his pupils remained fixed and dilated, and were dilated with only a very slight reaction the next morning and remained sluggish at forty-eight hours, normalising at seventy-two hours. A possible reason for its prolonged action may be uptake of atropine from the plasma into the aqueous humor of the eye, followed by its slow release.
Dr MacDougall-Davis cautions:

When assessing pupils in comatose cardiac arrest survivors, the potential for atropine to have a prolonged effect on pupil size and reactivity should be considered.

Atropine, fixed dilated pupils and prognostication following cardiac arrest
Resuscitation. 2011 Feb;82(2):232

Kids tracheal tubes – formulas galore

An ultrasound study of paediatric airways showed sonographic measurement to be a better predictor of tracheal tube size (using a formula – derived and then validated – to estimate external tube diameter) than traditional formulae for selecting the internal tube diameter based on age. Since the measurements, taken at the lower edge of the cricoid cartilage, were made after patients were paralyzed, and were performed without ventilation or positive end-expiratory pressure to minimize fluctuation in tracheal diameter, taking about 30 seconds, this is not something I anticipate applying in critical care practice. However, the paper does provide a good opportunity to revise some of the existing formulae. They used:
(1) The Cole formula for uncuffed tubes: ID (intenal diameter) in mm= (age in years)/4 + 4
(2) The Motoyama formula for cuffed ETTs in children aged 2 yr or older: ID in mm = (age in years)/4 + 3.5
(3) The Khine formula for cuffed ETTs in children younger than 2 yr: ID in mm = (age in years)/4 + 3.0
The formula established in the study was:

  • cuffed ETT outer diameter (OD) = 0.46 x (subglottic diameter) + 1.56
  • uncuffed ETT OD = 0.55 x (subglottic diameter) + 1.16

Age in months also correlated with optimal ETT size in mm, although the correlation was weaker than for subglottic diameter:

  • cuffed ETT OD = 0.027 x (age) + 5.2
  • uncuffed ETT OD = 0.030 x (age) + 5.4

BACKGROUND: Formulas based on age and height often fail to reliably predict the proper endotracheal tube (ETT) size in pediatric patients. We, thus, tested the hypothesis that subglottic diameter, as determined by ultrasonography, better predicts optimal ETT size than existing methods.
METHODS: A total of 192 patients, aged 1 month to 6 yr, who were scheduled for surgery and undergoing general anesthesia were enrolled and divided into development and validation phases. In the development group, the optimal ETT size was selected according to standard age-based formulas for cuffed and uncuffed tubes. Tubes were replaced as necessary until a good clinical fit was obtained. Via ultrasonography, the subglottic upper airway diameter was determined before tracheal intubation. We constructed a regression equation between the subglottic upper airway diameter and the outer diameter of the ETT finally selected. In the validation group, ETT size was selected after ultrasonography using this regression equation. The primary outcome was the fraction of initial cuffed and uncuffed tube sizes, as selected through the regression formula, that proved clinically optimal.
RESULTS: Subglottic upper airway diameter was highly correlated with outer ETT diameter deemed optimal on clinical grounds. The rate of agreement between the predicted ETT size based on ultrasonic measurement and the final ETT size selected clinically was 98% for cuffed ETTs and 96% for uncuffed ETTs.
CONCLUSIONS: Measuring subglottic airway diameter with ultrasonography facilitates the selection of appropriately sized ETTs in pediatric patients. This selection method better predicted optimal outer ETT diameter than standard age- and height-based formulas.

Prediction of Pediatric Endotracheal Tube Size by Ultrasonography
Anesthesiology. 2010 Oct;113(4):819-24