Category Archives: Trauma

Care of severely injured patient

Helicopters between hospitals

More National Trauma Databank analysis coming out in favour of helicopter transport: this time looking at interhospital transfer:

Background: Helicopter transport (HT) is frequently used for interfacility transfer of injured patients to a trauma center. The benefits of HT over ground transport (GT) in this setting are unclear. By using a national sample, the objective of this study was to assess whether HT impacted outcomes following interfacility transfer of trauma patients.

Methods: Patients transferred by HT or GT in 2007 were identified using the National Trauma Databank (version 8). Injury severity, resource utilization, and survival to discharge were compared. Stepwise logistic regression was used to determine whether transport modality was a predictor of survival after adjusting for covariates. Regression analysis was repeated in subgroups with Injury Severity Score (ISS) ≤15 and ISS >15.
Results: There were 74,779 patients transported by helicopter (20%) or ground (80%). Mean ISS was higher in patients transported by helicopter (17 ± 11 vs. 12 ± 9; p < 0.01) as was the proportion with ISS >15 (49% vs. 28%; odds ratio [OR], 2.53; 95% confidence interval [CI], 2.43-2.63). Patients transported by helicopter had higher rates of intensive care unit admission (54% vs. 29%; OR, 2.86; 95% CI, 2.75-2.96), had shorter transport time (61 ± 55 minutes vs. 98 ± 71 minutes; p < 0.01), and had shorter overall prehospital time (135 ± 86 minutes vs. 202 ± 132 minutes; p < 0.01). HT was not a predictor of survival overall or in patients with ISS ≤15. In patients with ISS >15, HT was a predictor of survival (OR, 1.09; 95% CI, 1.02-1.17; p = 0.01).
Conclusions: Patients transported by helicopter were more severely injured and required more hospital resources than patients transported by ground. HT offered shorter transport and overall prehospital times. For patients with ISS >15, HT was a predictor of survival. These findings should be considered when developing interfacility transfer policies for patients with severe injuries.
Helicopters Improve Survival in Seriously Injured Patients Requiring Interfacility Transfer for Definitive Care
J Trauma. 2011 Feb;70(2):310-4.

Neck movement in spite of collar

A cadaveric study using an artificially created unstable cervical spine injury has shown marked displacement of the vertebrae when cervical collars were applied, and when the bodies were moved in a way that simulated normal transfer and log-rolling. There was no comparison with a no-collar situation, so we can’t say from this that collars are necessarily bad, just that they’re no good in this cadaveric model. I like this statement by the authors:
A variety of collars, backboards, and other equipment and techniques are being used in an attempt to achieve spine stabilization, largely without any validation of efficacy when used in the presence of a severe cervical injury. Randomized, prospective clinical trial designs are challenging in this domain theless, basic cadaver studies can provide valuable insight into potential clinical efficacy.

"Severe unstable injuries were created in seven fresh whole human cadavers"

Even more musical to my ears is the editorial commentary by neurosurgery professor Richard L. Saunders, MD:
…the more compelling question is whether there is a place for collars in emergent protection of the injured cervical spine or are they simply a gimcrack***?
The incidence of second injuries to the spinal cord in the extraction of accident victims under the best of EMT performance is not known and would be difficult to determine. However, in an effort to minimize that incidence, paramedical gospel is the application of a cervical collar, maintaining the neck in in-line and in a neutral position. By definition, this gospel implies the deliberate movement of the neck to apply an orthotic known to be nonprotective. Furthermore, the neutral and in-line admonition implies that the patient’s neck position can be safely adjusted to “look better” without a shred of evidence that this might be a safer strategy than avoiding any unnecessary neck movement whatsoever….
…In a conclusion common to many small study reports, the authors recommend that more work should be done in this area. In my opinion that might be best in refinements of extraction methods with an eye to only that neck movement necessary to resuscitation, collar be damned.

Motion Within the Unstable Cervical Spine During Patient Maneuvering: The Neck Pivot-Shift Phenomenon
J Trauma. 2011 Jan;70(1):247-50
*** I confess never to have encountered this word before. According to the freedictionary.com, a gimcrack is ‘A cheap and showy object of little or no use; a gewgaw‘. Now, WTF is a gewgaw?!?!

GCS in intubated patients

We use the Glasgow Coma Score to describe conscious level, derived from eye opening, verbal response, and motor response.
One problem is that if your patient is intubated, there can’t be a verbal response. There are some ways round this. Imagine your intubated patient opens eys to a painful stimulus and withdraws his limb from one:

  • Just give him the lowest score (1) for the verbal component – E2M4V1
  • Write ‘V’ (ventilated) or ‘T’ (tube), eg. E2M4VT
  • Make it up, based on what you would expect the V score to be based on the E and M scores.

Weird as it sounds, there is a model for this, demonstrated in the paper abstracted below. The Derived Verbal Score = -0.3756 + Motor Score * (0.5713) + Eye Score * (0.4233).

Don’t worry…if you really want to use this, you don’t have to memorise that equation; there is an online calculator for it here and if you try it you’ll see this patient gets a derived verbal score of 2.3, and therefore a GCS of 7.3! Your decision now whether to round up or down. (In the meantime, I’ve given the patient a V of 1 and called it GCS E2M4VT=7.)
Alternatively, of course, you could try a better validated score that gives more information, the FOUR score, as validated here. The problem is, most people won’t know what you’re talking about.
The conundrum of the Glasgow Coma Scale in intubated patients: a linear regression prediction of the Glasgow verbal score from the Glasgow eye and motor scores.
Meredith W, Rutledge R, Fakhry SM, Emery S, Kromhout-Schiro S.
BACKGROUND: The Glasgow Coma Scale (GCS), which is the foundation of the Trauma Score, Trauma and Injury Severity Score, and the Acute Physiology and Chronic Health Evaluation scoring systems, requires a verbal response. In some series, up to 50% of injured patients must be excluded from analysis because of lack of a verbal component for the GCS. The present study extends previous work evaluating derivation of the verbal score from the eye and motor components of the GCS.
METHODS: Data were obtained from a state trauma registry for 24,565 unintubated patients. The eye and motor scores were used in a previously published regression model to predict the verbal score: Derived Verbal Score = -0.3756 + Motor Score * (0.5713) + Eye Score * (0.4233). The correlation of the actual and derived verbal and GCS scales were assessed. In addition the ability of the actual and derived GCS to predict patient survival in a logistic regression model were analyzed using the PC SAS system for statistical analysis. The predictive power of the actual and the predicted GCS were compared using the area under the receiver operator characteristic curve and Hosmer-Lemeshow goodness-of-fit testing.
RESULTS: A total of 24,085 patients were available for analysis. The mean actual verbal score was 4.4 +/- 1.3 versus a predicted verbal score of 4.3 +/- 1.2 (r = 0.90, p = 0.0001). The actual GCS was 13.6 + 3.5 versus a predicted GCS of 13.7 +/- 3.4 (r = 0.97, p = 0.0001). The results of the comparison of the prediction of survival in patients based on the actual GCS and the derived GCS show that the mean actual GCS was 13.5 + 3.5 versus 13.7 + 3.4 in the regression predicted model. The area under the receiver operator characteristic curve for predicting survival of the two values was similar at 0.868 for the actual GCS compared with 0.850 for the predicted GCS.
CONCLUSIONS: The previously derived method of calculating the verbal score from the eye and motor scores is an excellent predictor of the actual verbal score. Furthermore, the derived GCS performed better than the actual GCS by several measures. The present study confirms previous work that a very accurate GCS can be derived in the absence of the verbal component.
The conundrum of the Glasgow Coma Scale in intubated patients: a linear regression prediction of the Glasgow verbal score from the Glasgow eye and motor scores.
J Trauma. 1998 May;44(5):839-44 (if you have full text access to Journal of Trauma the best bit about this article is the discussion on pages 844-5 in which surgeons wrestle with the meaning of the word ‘conundrum’ and the spelling of ‘Glasgow’).

Inadequate pre-hospital needle thoracostomy

The purpose of this study was to evaluate the frequency of inadequate needle chest thoracostomy in the prehospital setting in trauma patients suspected of having a pneumothorax (PTX) on the basis of physical examination.
This study took place at a level I trauma center. All trauma patients arriving via emergency medical services with a suspected PTX and a needle thoracostomy were evaluated for a PTX with bedside ultrasound. Patients too unstable for ultrasound evaluation before tube thoracostomy were excluded, and convenience sampling was used. All patients were scanned while supine. Examinations began at the midclavicular line and included the second through fifth ribs. If no sliding lung sign (SLS) was noted, a PTX was suspected, and the lung point was sought for definitive confirmation. When an SLS was noted throughout and a PTX was ruled out on ultrasound imaging, the thoracostomy catheter was removed. Descriptive statistics were calculated.

Image used with kind permission of Bret Nelson, MD, RDMS (click image for more great ultrasound images)

A total of 57 patients were evaluated over a 3-year period. All had at least 1 needle thoracostomy attempted; 1 patient underwent 3 attempts. Fifteen patients (26%) had a normal SLS on ultrasound examination and no PTX after the thoracostomy catheter was removed. None of the 15 patients were later discovered to have a PTX on subsequent computed tomography.
In this study, 26% of patients who received needle thoracostomy in the prehospital setting for a suspected PTX appeared not to have had a PTX originally, nor had 1 induced by the needle thoracostomy. It may be prudent to evaluate such patients with bedside ultrasound instead of automatically converting all needle thoracostomies to tube thoracostomies.
Inadequate needle thoracostomy rate in the prehospital setting for presumed pneumothorax: an ultrasound study
J Ultrasound Med. 2010 Sep;29(9):1285-9

Cervical spine guideline

The UK College of Emergency Medicine has produced guidelines on the management of cervical spine injury in the ED

Since I have a bit of a ‘thing’ about the obsession with cervical immobilisation, I’m reproducing here an excerpt from the guideline regarding this topic:
In 1998, Hauswald published retrospective data that compared the neurological outcomes of 334 patients with blunt traumatic cervical spinal injury who all had spinal immobilisation performed (New Mexico) with 120 patients with blunt traumatic cervical spinal injury that had no spinal immobilisation performed (Malaya). There was a non-significant increase in neurological disability in the immobilised group. Though this comparison is flawed, the author’s argument that any cord injury from blunt trauma occurs at the time of the impact, that subsequent movement is very unlikely to cause further damage, and that alert patient will develop a position of comfort with muscle spasm protecting the spine appears credible. It is widely accepted that it may be harmful for patients with pre-existing vertebral anatomical abnormalities eg ankylosing spondylitis to have their neck forced into an unnatural position and such patients usually have their neck supported in a position of comfort with or without a collar.
A Cochrane review updated in 2009 by Kwan et al concluded that in the absence of any randomised controlled trials the low incidence of unstable injuries of the cervical spine amongst those immobilised raised the possibility that immobilisation may be associated with a higher morbidity and mortality than non-immobilisation. In a recent literature review, Benger and Blackman concluded that alert, co-operative trauma patients do not require cervical spine immobilisation unless their conscious level deteriorates or they find short-term support of a collar helpful.
The evidence both for and against cervical spine immobilisation is weak. Although Hauswald’s study is intriguing, if we accept a 1-2% prevalence of unstable cervical spine injury following blunt trauma and hypothesise that 1 in 10 patients with unstable cervical spinal injuries would suffer a spinal cord injury as a consequence of non-immobilisation of their neck then only 1 in 500 -1,000 patients would be harmed as a result, which exceeds Hauswald’s study population. There is a need for large randomised multi-centre trials to determine the risk:benefit ratio of neck immobilisation. However, the current practice of cervical spine immobilisation has been so widely adopted and the consequence of causing or exacerbating a spinal injury so catastrophic that such trials may not be supported by ethical committees….Though evidence that the use of cervical collars prevents secondary injury is lacking, no evidence could be found to contradict this statement and it is, therefore, supported.
The guideline does not specify what exactly they mean by cervical spine immobilisation. Clinical practice ranges from one-piece hard or semi-rigid collars (eg. Stifneck) to more comfortable two-piece collars (eg. Philadelphia), tape and sandbags alone, or ‘triple immobilisation’ (collar, sandbags and tape). It is perhaps the obsessive adherence to the latter in the absence of a single piece of supportive evidence that I find bewildering.
Fortunately most Australian practice I’ve witnessed settles on a collar or manual immobilisation, with early application of a two-piece collar in those patients who require prolonged immobilisation.
The College guideline provides a helpful and pragmatic summary of the evidence to date and a digestible list of recommendations that could guide both departmental practice and postgraduat exam revision.
Guideline on the management of alert, adult patients with potential cervical spine injury in the Emergency Department
College of Emergency Medicine 2010 (PDF)

Helicopters and trauma: systematic review

In the midst of reconfiguring its trauma systems, the United Kingdom’s National Health Service needed to evaluate the cost effectiveness of helicopter emergency medical services (HEMS). A systematic literature review was undertaken of all population-based studies evaluating the impact on mortality of helicopter transfer of trauma patients from the scene of injury. The authors also attempted to analyse whether it is the helicopter as a transport platform or the standard of the emergency medical service that accounts for any differences seen.
A search of the literature revealed 23 eligible studies. 14 of these studies demonstrated a significant improvement in trauma patient mortality when transported by helicopter from the scene. 5 of the 23 studies were of level II evidence with the remainder being of level III evidence.

Only one eligible study assessed HEMS in the UK. The other papers reported data from the USA, Italy, Australia, the Netherlands, Germany and South Africa.
The majority of studies show a mortality benefit with HEMS: fourteen studies reported results that demonstrated a significant mortality rate improvement with HEMS, four reported data that did not reach significance and five did not report whether results reached significance.
The authors suggest this variation may be a result of any of the following factors, and provide a thorough discussion of the literature pertaining to each of them:

  1. Transport of a physician to the scene
  2. Transport of advanced airway skills to the scene
  3. Transporting a team experienced in managing trauma patients
  4. Triage to the definitive treatment facility

The full text of the review is available at the link below.
Is it the H or the EMS in HEMS that has an impact on trauma patient mortality? A systematic review of the evidence
EMJ 2010;27(9):692-701 (Free Full Text)

A French FIRST in pre-hospital medicine

A contribution has been made to the literature supporting physician intervention in some pre-hospital trauma patients, in the form of the FIRST study: French Intensive care Recorded in Severe Trauma. Not exactly the class 1 evidence we’d (well, I’d) like to see, but a prospective study from France comparing outcomes in patients treated by routine pre-hospital providers with those managed in the field by emergency physicians working for SMUR (Service Mobile d’Urgences et de Réanimation). Primary outcome was 30-day mortality. Only patients admitted to an ICU were included, and researchers were not blinded to which group (SMUR vs nonSMUR) patients belonged. A large group of SMUR patients (2513) was compared with a much smaller (190) nonSMUR group.
Patients were sicker in the SMUR group (lower GCS and SpO2, higher Injury Severity Score, higher frequency of abnormal pupils). Unadjusted mortality was not significantly different but when adjustment for ISS and physiological status was made (I don’t really understand how this was done), SMUR care was significantly associated with a reduced risk of 30-day mortality (OR: 0.55, 95% CI: 0.32-0.94, p = 0.03).

Lots of interesting points in this study, most of which ask more questions that they answer. The French pre-hospital physicians have an aggressive approach to trauma resuscitation, doing rapid sequence intubation in more than a half of their patients and even starting catecholamine infusions as a fluid-sparing strategy in shocked patients. The full text link is worth a read for those interested in this area of medicine.
Medical pre-hospital management reduces mortality in severe blunt trauma: a prospective epidemiological study
Critical Care 2011, 15:R34
Full text as provisional PDF

Open thoracostomy

Not a new paper to cite here, just a collection of resources that refer to open thoracostomy in trauma.
A longstanding practice by some European and Australasian HEMS physicians, open thoracostomy is essentially a chest tube procedure without the actual intercostal catheter: the surgical incision is made, blunt dissection is performed, and the pleura penetrated. The wound is then left open.
This is a rapid way of decompressing a tension pneumothorax in a critically injured trauma patient who is intubated. The positive pressure ventilation prevents the thoracostomy wound from acting as an open, ‘sucking’, chest wound.
In many pre-hospital services this is the preferred approach to pleural decompression in an intubated patient, and also forms part of the approach to resuscitation in traumatic cardiac arrest.
Some principles to consider are:

  • A tube and drainage system are not necessary for the drainage of air, but should be used if there is signficant haemothorax
  • The tissues may re-appose during transport so physiological deterioration should prompt a re-fingering of the thoracostomy to re-establish the drainage tract and allow air to escape
  • Standard intravenous cannula devices may be shorter than the distance from chest wall to pleural space in many adults, adding to the inadequacy of needle decompression
  • Signs of tension pneumothorax are rarely if ever as obvious as the textbooks suggest – unexplained shock or hypoxaemia in a patient with actual or probably thoracic trauma should prompt consideration of pleural decompression even in the absence of obvious clinical signs of pneumothorax – subtle evidence only may exist, such as palpable subcutaneous emphysema
  • This should only be done in intubated patients undergoing positive pressure ventilation!

This video shows the procedure, done by a relative beginner; a slightly larger incision with more assertive dissection would make it faster and more effective

Not yet heard Scott Weingart’s excellent podcast on traumatic arrest, which includes open, or ‘finger’, thoracostomy? You can find it here
Thoracostomy references

Simple Thoracostomy Avoids Chest Drain Insertion in Prehospital Trauma
J Trauma 1996 39(2):373-374
Simple thoracostomy in prehospital trauma management is safe and effective: a 2-year experience by helicopter emergency medical crews
European Journal of Emergency Medicine 2006, 13:276–280
Prehospital thoracostomy
European Journal of Emergency Medicine 2008, 15:283–285
Chest decompression during the resuscitation of patients in prehospital traumatic cardiac arrest
Emerg. Med. J. 2009;26;738-740
Life-saving or life-threatening? Prehospital thoracostomy for thoracic trauma
Emerg Med J 2007;24:305–306
Pre-Hospital and In-Hospital Thoracostomy: Indications and Complications
Ann R Coll Surg Engl. 2008 January; 90(1): 54–57
Needle decompression is inadequate:
Needle Thoracostomy in the Treatment of a Tension Pneumothorax in Trauma Patients: What Size Needle?
J Trauma. 2008;64:111–114
Pre-hospital management of patients with severe thoracic injury
Injury 1995 26(9):581-5

Pre-hospital iv and increased mortality

The US media seem to be making a big thing of a recent article published ahead of print which demonstrates an association between increased mortality from trauma and the insertion of an intravenous line with or without the administration of fluid.
This was a retrospective cohort study of over 770 000 patients from the National Trauma Data Bank. Approximately half (49.3%) received ‘prehospital IV’, which could mean fluids, or could just mean insertion of an intravenous cannula: ‘we could not definitively differentiate IV fluid administration versus IV catheter placement alone‘.
Unadjusted mortality was significantly higher in patients in the prehospital IV group, although the abstract inaccurately reports this to be ‘in patients receiving prehospital IV fluids‘ (4.8% vs. 4.5%, P < 0.001).
Multivariable logistic regression was used to examine the relationship between prehospital IV and mortality in the 311,071 patients with complete data. After adjustment, prehospital IV patients had significantly higher mortality than those without a prehospital IV. The odds ratio of death associated with prehospital IV placement was 1.11 (95% CI 1.06–1.17). When Dead-On-Arival patients were excluded from the group as a whole, the association persisted (OR 1.17, 95% CI 1.11–1.23).

Hey you're killing me here!

On subgroup analyses, the association between IV placement and excess mortality was maintained in nearly all patient subsets; the effect was more exaggerated in penetrating trauma victims.
Media speculation as to the reason for this association abounds, like USA Today‘s ‘those who are given pre-hospital IV fluids are actually 11% more likely to die than those who aren’t, not only because of transport delays but also in part because of the increased risk for bleeding that can accompany a fluid-induced increase in blood pressure‘. However the study did not record any pre-hospital times and could not tell which patients received fluid, let alone what the effect of fluid on blood pressure was.
The authors are open about this and other limitations: ‘The NTDB did not report prehospital transport times or differentiate urban versus rural care. Thus, we could not examine whether excess mortality in patients treated with IVs was directly associated with delays in transport to definitive care. We were also not able to control for transport time within the multiple regression model or perform a stratified analysis by urban versus rural patients. Perhaps this analysis would have identified a subset of patients who may benefit from IV placement‘.
No doubt this will be added to the pile of mainly hypothesis-generating literature quoted by the scoop-and-run brigade whose black-and-white worldview includes paramedics who want to delay proper treatment and a homogeneous trauma population whose lives can only be saved by a trauma surgeon in a hospital. Those who have evolved colour vision find this an interesting, but hardly practice-changing study; caution regarding injudicious fluid administration has been the game plan for many civilian and military pre-hospital providers since early last decade, and it is clear that different patients with different injury patterns, different degrees of physiological derangement, and different distances from the right hospital will continue to have different clinical needs specific to their presentation, some of which are likely to be of benefit if provided in the field, through an intravenous line.
Prehospital Intravenous Fluid Administration is Associated With Higher Mortality in Trauma Patients: A National Trauma Data Bank Analysis
Ann Surg. 2010 Dec 20. [Epub ahead of print]

A tracheal tube in the chest

Intercostal catheters can kink, obstruct, or get pulled out. These hazards are greater during transport of the patient. Critical care and retrieval medicine doctors in Queensland, Australia (where many people are having a bad time right now) have invented an elegant alternative: using a cuffed tracheal tube in the pleural space instead. It can be attached to a Heimlich valve.
They even used a bit of science to demonstrate its effectiveness, by creating pneumothoraces and haemothoraces in sheep and comparing the tracheal tube with a standard intercostal catheter (ICC).
The method for insertion is simple:

  1. Breach the pleura
  2. Insert a 14 Fr Cook intubating bougie into the thoracic cavity
  3. Railroad a 7.0 mm internal diameter tracheal tube (ETT) into the chest cavity
  4. Inflate the cuff
  5. Retract the tube until resistance is felt.
  6. Remove the ETT connector
  7. Attach a Heimlich valve

The results of the comparison are convincing: ‘The ETT proved faster to insert for both sheep. This was likely because it did not require suturing. Both the ETT and the ICC were comparable in draining blood. It was noted that neither tube was particularly effective when the haemothorax was positioned ‘side-up’. When turned ‘side-down’, both tubes successfully drained blood. Despite having multiple drainage ports, the ICC required more manipulation and was noted to kink. Conversely, the ETT with a single lumen and a Murphy eye, was stiffer and drained a similar amount of blood without the catheter having to be milked.’
Proposed advantages of this method include:

  • More portable equipment
  • Faster insertion
  • Provides kit redundancy
  • Does not require suturing
  • Avoids operator trauma from any sharp edges such as a fractured rib. (No attempt was made to place a finger into the chest cavity in the ETT group).
  • Allows for a smaller incision
  • Less trauma to the insertion site
  • Might also offer a back up, when conventional equipment has been exhausted.

The authors graciously note that both Portex and Cook have developed ICC kits that now go some way in supporting the original idea behind this study. These include flexible introducers (Portex) and guidewire insertion technique (Cook).
Appraisal of the endotracheal tube as an alternative to the intercostal catheter
Emerg Med Australas. 2010 Dec;22(6):573-4