Septic myocardial dysfunction is a well recognised contributor to shock in sepsis but for many of us we assume this to be gross systolic impairment. Interestingly a recent study highlights that patients with severe sepsis and septic shock frequently have diastolic dysfunction1. They found that diastolic dysfunction was the strongest independent predictor of early mortality, even after adjusting for the APACHE-II score and other predictors of mortality.
In this study, 9.1% of severe sepsis/septic shock patients had isolated systolic dysfunction, 14.1% had combined systolic and diastolic dysfunction, and 38% had isolated diastolic dysfunction.
Importantly, the authors point out that although diastolic dysfunction is associated with age, hypertension, diabetes mellitus, and ischaemic heart disease, diastolic dysfunction is a stronger independent predictor of mortality than age and the other co-morbidities. However, a limitation of the study acknowledged by the authors is that it did not include follow-up echocardiography examinations, so we do not know whether sepsis was responsible for a transient diastolic dysfunction or whether the observed diastolic dysfunction was a pre-existing condition.
Both troponin and NT-ProBNP elevations also predicted mortality.
Want to know how to measure diastolic dysfunction? These authors measured mitral annular early-diastolic peak velocity, or the e’-wave (called ‘e prime’). It is a way of seeing how fast myocardial tissue relaxes in diastole, and if its peak velocity is slow (in this case < 8cm/s) there is diastolic dysfunction. We measure speed using Doppler, and in this case we’re looking at the speed of heart tissue (as opposed to the blood cells within the heart chambers) so we do ‘Tissue Doppler Imaging’, or TDI. You need an echo machine with pulsed-wave Doppler, and you need to be able to get an apical view. This is explained really nicely here2 but if you don’t have the time or the echopassion to read a whole article on TDI watch this one minute video (BY emergency physicians FOR emergency physicians!) on diastology, where TDI measurement of e’ is shown from 45 seconds into the video.
For reference, there is some more detail on diastolic function measurements at the Echobasics site.
If you think you can cope with any more of this level of awesomeness and want these geniuses to talk to you from your smartphone in the ED then get the freeOne Minute Ultrasound app for Android or Apple devices.
AIMS: Systolic dysfunction in septic shock is well recognized and, paradoxically, predicts better outcome. In contrast, diastolic dysfunction is often ignored and its role in determining early mortality from sepsis has not been adequately investigated.
METHODS AND RESULTS: A cohort of 262 intensive care unit patients with severe sepsis or septic shock underwent two echocardiography examinations early in the course of their disease. All clinical, laboratory, and survival data were prospectively collected. Ninety-five (36%) patients died in the hospital. Reduced mitral annular e’-wave was the strongest predictor of mortality, even after adjusting for the APACHE-II score, low urine output, low left ventricular stroke volume index, and lowest oxygen saturation, the other independent predictors of mortality (Cox’s proportional hazards: Wald = 21.5, 16.3, 9.91, 7.0 and 6.6, P< 0.0001, <0.0001, 0.002, 0.008, and 0.010, respectively). Patients with systolic dysfunction only (left ventricular ejection fraction ≤50%), diastolic dysfunction only (e’-wave <8 cm/s), or combined systolic and diastolic dysfunction (9.1, 40.4, and 14.1% of the patients, respectively) had higher mortality than those with no diastolic or systolic dysfunction (hazard ratio = 2.9, 6.0, 6.2, P= 0.035, <0.0001, <0.0001, respectively) and had significantly higher serum levels of high-sensitivity troponin-T and N-terminal pro-B-type natriuretic peptide (NT-proBNP). High-sensitivity troponin-T was only minimally elevated, whereas serum levels of NT-proBNP were markedly elevated [median (inter-quartile range): 0.07 (0.02-0.17) ng/mL and 5762 (1001-15 962) pg/mL, respectively], though both predicted mortality even after adjusting for highest creatinine levels (Wald = 5.8, 21.4 and 2.3, P= 0.015, <0.001 and 0.13).
CONCLUSION: Diastolic dysfunction is common and is a major predictor of mortality in severe sepsis and septic shock.
Most of us would give strong consideration to giving thrombolytics to patients with massive pulmonary embolism (PE), which is in keeping with many guidelines. Some physicians remain reluctant to do so, often citing the lack of good evidence. It is true that large scale RCTs have not been done in this population. The authors of this recent retrospective study state:
There are no definitive trials that prove the value of thrombolytic therapy in unstable patients with pulmonary embolism. It is extremely remote that a randomized controlled trial will be performed in the future. We therefore analyzed the database of the Nationwide Inpatient Sample to test the hypothesis that thrombolytic therapy reduces case fatality rate in unstable patients with acute pulmonary embolism.
They demonstrate a striking difference in mortality when thrombolysis is given to unstable patients with PE, which is further reduced with the addition of a vena cava filter. ‘Unstable’ was defined as having a listed code for shock or ventilator dependence.
Associated comorbid conditions were more often present in those who did not receive thrombolytic therapy than in those who did. However in their discussion the authors add:
Although unstable patients who received thrombolytic therapy had fewer comorbid conditions than those who did not, this would not explain the difference in case fatality rate because unstable patients with a primary diagnosis of pulmonary embolism and none of the comorbid conditions…also showed a lower case fatality rate with thrombolytic therapy. Therefore, differences in comorbid conditions in this group were eliminated as a possible cause of the lower case fatality rate in unstable patients who received thrombolytic therapy.
They round off their conclusion with:
Despite the marked reduction of case fatality rate with thrombolytic therapy in unstable patients, only 30% of unstable patients received it, and the proportion receiving thrombolytic therapy is diminishing. On the basis of these data, thrombolytic therapy in combination with a vena cava filter in unstable patients with acute pulmonary embolism seems indicated.
Many thanks to Dr Daniel Horner for highlighting this paper.
BACKGROUND: Data are sparse and inconsistent regarding whether thrombolytic therapy reduces case fatality rate in unstable patients with acute pulmonary embolism. We tested the hypothesis that thrombolytic therapy reduces case fatality rate in such patients.
METHODS: In-hospital all-cause case fatality rate according to treatment was determined in unstable patients with pulmonary embolism who were discharged from short-stay hospitals throughout the United States from 1999 to 2008 by using data from the Nationwide Inpatient Sample. Unstable patients were in shock or ventilator dependent.
RESULTS: Among unstable patients with pulmonary embolism, 21,390 of 72,230 (30%) received thrombolytic therapy. In-hospital all-cause case fatality rate in unstable patients with thrombolytic therapy was 3105 of 21,390 (15%) versus 23,820 of 50,840 (47%) without thrombolytic therapy (P< .0001). All-cause case fatality rate in unstable patients with thrombolytic therapy plus a vena cava filter was 505 of 6630 (7.6%) versus 4260 of 12,850 (33%) with a filter alone (P<.0001). Case fatality rate attributable to pulmonary embolism in unstable patients was 820 of 9810 (8.4%) with thrombolytic therapy versus 1080 of 2600 (42%) with no thrombolytic therapy (P<.0001). Case fatality rate attributable to pulmonary embolism in unstable patients with thrombolytic therapy plus vena cava filter was 70 of 2590 (2.7%) versus 160 of 600 (27%) with a filter alone (P<.0001).
CONCLUSION: In-hospital all-cause case fatality rate and case fatality rate attributable to pulmonary embolism in unstable patients was lower in those who received thrombolytic therapy. Thrombolytic therapy resulted in a lower case fatality rate than using vena cava filters alone, and the combination resulted in an even lower case fatality rate. Thrombolytic therapy in combination with a vena cava filter in unstable patients with acute pulmonary embolism seems indicated.
Thrombolytic Therapy in Unstable Patients with Acute Pulmonary Embolism: Saves Lives but Underused Am J Med. 2012 May;125(5):465-70
Passive leg raising (PLR) is a great ‘free reversible fluid challenge’ to see if a shocked or hypotensive patient is likely to respond to volume therapy. A new study assesses its applicability in children.
PLR predicted fluid responders with 85% specificity but a lack of response did not rule out fluid responsiveness. Also, the effect of the PLR on cardiac index measured by echocardiography was the only way of predicting response – there was no relation to the more easily monitored effects of PLR on systolic blood pressure or heart rate.
Want to learn how to measure cardiac output using ultrasound? Mike Mallin from the Emergency Ultrasound Podcast shows you how here
OBJECTIVE: Fluid challenge is often used to predict fluid responsiveness in critically ill patients. Inappropriate fluid expansion can lead to some unwanted side effects; therefore, we need a noninvasive predictive parameter to assess fluid responsiveness. We want to assess the hemodynamic parameter changes after passive leg raising, which can mimic fluid expansion, to predict fluid responsiveness in pediatric intensive care unit patients and to get a cutoff value of cardiac index in predicting fluid responsiveness in pediatric patients.
PATIENTS: Children admitted to pediatric intensive care.
INTERVENTION: Hemodynamic parameters were assessed at baseline, after passive leg raising, at second baseline, and after volume expansion (10 mL/kg normal saline infusion over 15 mins).
MEASUREMENTS AND MAIN RESULTS: We measured the heart rate, systolic blood pressure, and stroke volume and cardiac index using Doppler echocardiography. The hemodynamic parameter changes induced by passive leg raising were monitored. Among 40 patients included in the study, 20 patients had a cardiac index increase of ≥10% after volume expansion (responders). Changes in heart rate, systolic blood pressure, and stroke volume after passive leg raising did not significantly relate to the response to volume expansion. There was significant relation between changes in cardiac index to predict fluid responsiveness (p = .012, r = .22, 95% confidence interval 1.529 to 31.37). A cardiac index increase by ≥10% induced by passive leg raising predicted preload-dependent status with sensitivity of 55% and specificity of 85% (area under the curve 0.71 ± 0.084, 95% confidence interval 0.546-0.874).
CONCLUSION: The concomitant measurements in cardiac index changes after the passive leg raising maneuver can be helpful in predicting who might have an increase in cardiac index with subsequent fluid resuscitation.
In the management of the shocked patient, we sometimes get a little fixated on the need for an arterial line. This is in part due to previous studies suggesting non-invasive blood pressure (NIBP) measurements were inaccurate in the critically ill. This appears no longer to be the case with modern oscillometric devices and carefully chosen cuff sizes. This recent study showed mean arterial pressure (MAP) measured non-invasively from the arm closely correlated with invasive measurements. NIBP was effective at identifying hypotension and recording the response to therapy. Although patients with severe occlusive arterial disease were excluded, the study did include a number of shocked patients on vasoactive therapies.
Systolic and diastolic pressures were not accurate. This should not be surprising since, as the authors explain: “oscillometric devices directly measure the MAP and only extrapolate systolic arterial pressure and diastolic arterial pressure, using proprietary algorithms”
Thia study suggests that NIBP measurement of MAP from the arm is accurate but, if contraindicated, the ankle (or even the thigh in older sedated patients) may be a suitable alternative site permitting a reliable detection of hypotensive and therapy-responding patients.
OBJECTIVE: In the critically ill, blood pressure measurements mostly rely on automated oscillometric devices pending the intra-arterial catheter insertion or after its removal. If the arms are inaccessible, the cuff is placed at the ankle or the thigh, but this common practice has never been assessed. We evaluated the reliability of noninvasive blood pressure readings at these anatomic sites. DESIGN: Prospective observational study. SETTING: Medical-surgical intensive care unit. PATIENTS: Patients carrying an arterial line with no severe occlusive arterial disease. INTERVENTION: Each patient underwent a set of three pairs of noninvasive and intra-arterial measurements at each site (arm, ankle, thigh [if Ramsay sedation scale >4]) and, in case of circulatory failure, a second set of measurements after a cardiovascular intervention (volume expansion, change in catecholamine dosage). MEASUREMENTS AND MAIN RESULTS: In 150 patients, whatever the cuff site, the agreement between invasive and noninvasive readings was markedly higher for mean arterial pressure than for systolic or diastolic pressure. For mean arterial pressure measurement, arm noninvasive blood pressure was reliable (mean bias of 3.4 ± 5.0 mm Hg, lower/upper limit of agreement of -6.3/13.1 mm Hg) contrary to ankle or thigh noninvasive blood pressure (mean bias of 3.1 ± 7.7 mm Hg and 5.7 ± 6.8 mm Hg and lower/upper limits of agreement of -12.1/18.3 mm Hg and -7.7/19.2 mm Hg, respectively). During acute circulatory failure (n = 83), arm noninvasive blood pressure but also ankle and thigh noninvasive blood pressure allowed a reliable detection of 1) invasive mean arterial pressure 10%) increase in invasive mean arterial pressure after a cardiovascular intervention (area under the receiver operating characteristic curve of 0.99 [0.92-1], 0.90 [0.80-0.97], and 0.96 [0.87-0.99], respectively). CONCLUSION: In our population, arm noninvasive mean arterial pressure readings were accurate. Either the ankle or the thigh may be reliable alternatives, only to detect hypotensive and therapy-responding patients.
Noninvasive monitoring of blood pressure in the critically ill: Reliability according to the cuff site (arm, thigh, or ankle) Crit Care Med. 2012 Apr;40(4):1207-13
I promised to put some summary notes on the site for those who attended my talk on ‘The REAL Shocked Patient’ for the Australian College of Ambulance Professionals on Tuesday 21st February 2012, so here they are:
Shocked patients are important – they comprise most of the ‘talk and die’ caseload that preoccupies pub conversations between emergency physicians
It’s easy to mistake these patients as less sick than, say, hypoxic ones, but oxygen delivery to the tissues doesn’t just depend on oxygen!
Here’s a dead wombat – someone in the audience knew a worrying amount about wombat anuses.
The 4 Hs and 4 Ts aren’t a very cognitively practical mnemonic for the causes of PEA arrest (which is an extreme form of hypotension)
I prefer the ‘3 plus 3’ rule, which breaks down the causes into three – volume, pump, and obstruction. Obstruction is further broken down into three causes, being tension pneumothorax, cardiac tamponade, and pulmonary embolism:
Let’s look at some cases of shock caused by volume deficit, pump falure, or one of the three causes of obstruction to the circulation:
Case 1: The hypotensive motorcyclist
His low back pain suggested pelvic fracture
Think of ‘blood on the floor and four more’ (chest, abdomen, pelvis/retroperitoneum, long bones) and consider non-bleeding causes such as neurogenic (spinal injury), tension pneumothorax, cardiac tamponade, and finally medical causes/iatrogenic (drug) causes.
Don’t underestimate the importance of pelvis and limb splinting as a haemorrhage control technique in blunt trauma
Ultrasound in flight made thoracic or abdominal bleeding very unlikely, and ruled out tamponade and pneumothorax
Although he was hypotensive, no fluids were given, as he was mentating normally and peripherally well perfused, with a radial pulse. If we gave fluid, we would titrate to the presence of a radial pulse (in blunt trauma) but we don’t want to ‘pop the clot’ by elevating the BP, or make him less able to form effective clots by diluting his blood with crystalloid.
Mortality in trauma sharply rises with systolic BP below 105-110, so recalibrate your definition of hypotension in terms of when you might be concerned, and which patients may benefit from triage to a trauma centre.
Case 2: The child crushed by a wall
Caution regarding lower limb infusions in patients with abdominal / pelvic injuries – the fluid may not get to the heart.
Case 3: The boy stabbed in the upper thigh
In penetrating limb trauma, prehospital options include pressure, elevation, tourniquet, and haemostatic dressings. Foley catheters have been used successfully in transition zones such as the neck or groin.
Case 4: Haematemesis
Should we apply the same principles of permissive hypotension to patients with ‘medical’ bleeding?
The Trendelenburg position doesn’t make a lot of sense – no need to head down the patient, although the act of elevating the legs may ‘autoinfuse’ a bolus of blood to the core circulation, and is recommended by some bodies as a first aid manoeuvre for hypotensive patients in the field prior to iv fluids.
Case 5: The overdose patient with a low blood pressure but otherwise fine.
When don’t I Worry about hypotension? When the patient is:
With it
Warm peripherally
Weeing
and (in hospital) Without a raised lactate
Case 6: Two cases of pump failure: STEMI and complete heart block
Adrenaline infusions can be simply made with a 1mg 1:10000 minijet diluted in a litre of saline and dripped through a peripheral line titrated to BP / HR / mentation / pulses.
In complete heart block (or other bradycardias) with hypotension, percussion pacing is an option of you don’t have access to transcutaneous or transvenous pacing. If you get capture, it’s as effective in terms of stroke volume as a pacing wire.
Case 7: Obstructive shock – tamponade cases
…with resolution of hypotension after drainage by emergency physicians who identified the tamponade on ultrasound, even though they didn’t suspect it clinically. It can be a surprise!
Case 8: Obstructive shock – tension pneumothorax
Patients are often agitated and won’t lie flat. They may complain of ‘tight’ breathing. Crackles and/or wheezes may be heard. The classic description of deviated trachea, absent breath sounds, and hyperresonance are the exception, not the rule. Be suspicious and always palpate for subcutaneous emphysema.
Don’t assume a needle decompression will work – there is debate about the best site but in some adults a standard needle won’t reach the pleural space. If you need to place more than one needle, go for it. As physicians, we do thoracostomies to ensure we’ve hit the spot.
Case 9: Obstructive shock – pulmonary embolism
A tough one prehospital, as the hypotensive ones need fibrinolysis. Fluid may help the hypotension but too much can overdistend the right ventricle which can then impair left ventricular filling, and worsen the patient’s circulatory state. Once again, ultrasound may be invaluable in highlighting PE as a possible cause for shock.
Case 10: Penetrating trauma to the ‘box’ – chest and upper abdomen.
If these patients arrest due to tamponade, early (< 10 minutes) clamshell thoracotomy can be life saving, which means it may need to be done pre-hospital by a HEMS physician to provide a chance of survival. Be on the look out for these and if in doubt activate a medical team (in New South Wales). Like with tension pneumothorax, these patients may be extremely agitated as a manifestation of their shock.
Case 11:Confused elderly male with pyrexia and smelly urine who appears ostensibly ‘normotensive’
…but how many 82 year olds do you know with a BP of 110/57? His acute confusion may be a manifestation of shock and he needs aggressive evaluation in hospital including a lactate measurement. Don’t be afraid to give this guy fluids in the field – you can make a big difference here.
Here are five of the myths I promised to expose:
So…shocked patients can talk and die. Don’t let that happen. Shocked patients can be normotensive, and hypotensive patients might not be shocked. Have a plan for how you might evaluate the 3+3 causes in your setting and what you can use from your medication and equipment list to manage volume, pump, and obstruction issues. You will save many lives if you become a serious shock detective.
The current Surviving Sepsis campaign guidelines recommend that vasopressin should not be administered as the initial vasopressor in septic shock, and that vasopressin at constant dosage of 0.03 units/min may be added to norepinephrine with anticipation of an effect equivalent to that of norepinephrine alone. European intensivists conducted a systematic review to determine vasopressin’s risks and benefits in vasodilatory shock. There was no demonstrated survival benefit but its use is associated with a significant reduction in norepinephrine requirement.
Interestingly, the authors point out: ‘Low-dose vasopressin may help to restore blood pressure in patients with hypotension refractory to catecholamines, and may favor pulmonary vasodilation and increase glomerular filtration rate and plasma cortisol levels’.
My take home: consider its use if an apparent vasodilatory shock state is refractory to catecholamines, but don’t stress if you don’t have access to it (or it will complicate practical aspects of organising resuscitation and transfer), since there’s still no clear evidence for outcome benefit.
OBJECTIVE:
To examine the benefits and risks of vasopressin or its analog terlipressin for patients with vasodilatory shock.
DATA SOURCE:
We searched the CENTRAL, MEDLINE, EMBASE, and LILACS databases (up to March 2011) as well as reference lists of articles and proceedings of major meetings; we also contacted trial authors. We considered randomized and quasirandomized trials of vasopressin or terlipressin versus placebo or supportive treatment in adult and pediatric patients with vasodilatory shock. The primary outcome for this review was short-term all-cause mortality.
STUDY SELECTION:
We identified 10 randomized trials (1,134 patients). Six studies were considered for the main analysis on mortality in adults.
DATA EXTRACTION AND SYNTHESIS:
The crude short-term mortality was 206 of 512 (40.2%) in vasopressin/terlipressin-treated patients and 198 of 461 (42.9%) in controls [six trials, risk ratio (RR) = 0.91; 95% confidence interval (CI) 0.79-1.05; P = 0.21; I (2) = 0%]. There were 49 of 463 (10.6%) patients with serious adverse events in the vasopressin/terlipressin arm and 51 of 431 (11.8%) in the control arm (four trials, RR = 0.90; 95% CI 0.49-1.67; P = 0.75; I (2) = 26%). Metaregression analysis showed negative correlation between vasopressin dose and norepinephrine dose (P = 0.03).
CONCLUSIONS:
Overall, use of vasopressin or terlipressin did not produce any survival benefit in the short term in patients with vasodilatory shock. Physicians may value the sparing effects of vasopressin/terlipressin on norepinephrine requirement given its apparent safe profile.
An editorial1 reviewing options for circulatory support in patients with cardiogenic shock argues that traditional inotrope therapy may be replaced by newer alternatives that have a less detrimental effect on myocardial oxygen demand.
Newer inotropic agents include levosimendan, istaroxime, and omecamtiv mecarbil. Mechanical therapies include intra-aortic balloon pumps (IABP), ventricular assist devices (VAD), and extracorporeal membrane oxygenation (ECMO).
Levosimendan is an inodilator, with the following characteristics:
stabilises the myocardial calcium-troponin C complex
activates adenosine triphosphate (ATP)-sensitive potassium channels in vascular smooth muscle and cardiac mitochondria,
acts as a traditional phosphodiesterase inhibitor at higher doses
improved cardiac output and a reduction in filling pressures compared with dobutamine
may also improve diastolic function by increasing relaxation rate
modulates the neuroendocrine response to heart failure by reducing brain natriuretic peptide levels
has anti-apoptotic and anti-inflammatory effects
renal function may also improve
is associated with a similar risk of ventricular arrhythmias to dobutamine
increases risk of new onset atrial fibrillation
has conflicting literature surrounding mortality
has shown a lack of consistent outcome benefits in studies
may be useful in postmyocardial infarction cardiac dysfunction and septic shock through increasing coronary flow and attenuating inflammatory activation, respectively2.
Istaroxime, a novel inotrope with positive lusitropic (cardiac relaxant) effects3:
is an inhibitor of the sodium-potassium-ATPase (resulting, like digoxin, in elevated intracellular calcium) with additional stimulatory effects on the sarcoplasmic reticulum calcium pump (SERCA)
provides a dose-dependant increase in cardiac output without significant change in heart rate or arrhythmia
in one study reducesd pulmonary capillary wedge pressure, increased systolic blood pressure, and reduced heart rate and left ventricular end-diastolic volume
requires further clinical evaluation.
Omecamtiv mecarbil is a cardiac myosin activator. This new drug:
improves myocardial contraction by increasing the hydrolysis of ATP by myosin ATPase
this produces the power stroke between actin and myosin and subsequent shortening of sarcomere length
in phase-2a studies in patients with systolic heart failure it demonstrated improved stroke volume without an increase in heart rate, although cardiac ischaemia emerged at high plasma concentrations4,5.
PURPOSE OF REVIEW: ICU patients frequently develop low output syndromes due to cardiac dysfunction, myocardial injury, and inflammatory activation. Conventional inotropic agents seem to be useful in restoring hemodynamic parameters and improving peripheral organ perfusion, but can increase short-term and long-term mortality in these patients. Novel inotropes may be promising in the management of ICU patients, having no serious adverse effects. This review summarizes all the current knowledge about the use of conventional and new inotropic agents in various clinical entities of critically ill patients.
RECENT FINDINGS: In recent European Society of Cardiology guidelines, inotropic agents are administered in patients with low output syndrome due to impaired cardiac contractility, and signs and symptoms of congestion. The most recommended inotropes in this condition are levosimendan and dobutamine (both class of recommendation: IIa, level of evidence: B). Recent data indicate that levosimendan may be useful in postmyocardial infarction cardiac dysfunction and septic shock through increasing coronary flow and attenuating inflammatory activation, respectively. Furthermore, calcium sensitizing by levosimendan can be effectively used for weaning of mechanical ventilation in postcardiac surgery patients and has also cardioprotective effect as expressed by the absence of troponin release in this patient population. Finally, new agents, such as istaroxime and cardiac myosin activators may be safe and improve central hemodynamics in experimental models of heart failure and heart failure patients in phase II clinical trials; however, large-scale randomized clinical trials are required.
SUMMARY: In an acute cardiac care setting, short-term use of inotropic agents is crucial for the restoration of arterial blood pressure and peripheral tissue perfusion, as well as weaning of cardiosurgery. New promising agents should be tested in randomized clinical trials.
[/EXPAND]
3. Combining SERCA2a activation and Na-K ATPase inhibition: a promising new approach to managing acute heart failure syndromes with low cardiac output. Discov Med. 2011 Aug;12(63):141-51 Free Full Text
[EXPAND Abstract]
Heart failure (HF) patients are a medically complex and heterogeneous population with multiple cardiac and non-cardiac comorbidities. Although there are a multitude of etiologic substrates and initiating and amplifying mechanisms contributing to disease progression, these pathophysiologic processes ultimately all lead to impaired myocardial function. The myocardium must both pump oxygenated, nutrient-rich blood throughout the body (systolic function) and receive deoxygenated, nutrient-poor blood returning from the periphery (diastolic function). At the molecular level, it is well-established that Ca2+ plays a central role in excitation-contracting coupling with action potentials stimulating the opening of L-type Ca2+ in the plasma membrane and ryanodine receptor 2 (RyR2) in the sarcoplasmic reticulum (SR) membrane during systole and the Na-Ca2+ exchanger and SERCA2a returning Ca2+ to the extracellular space and SR, respectively, during diastole. However, there is increasing recognition that impaired Ca2+ cycling may contribute to myocardial dysfunction. Preclinical studies and clinical trials indicate that combining SERCA2a activation and Na-K ATPase inhibition may increase contractility (inotropy) and facilitate active relaxation (lusitropy), improving both systolic and diastolic functions. Istaroxime, a novel luso-inotrope that activates SERCA2a and inhibits the Na-K ATPase, is currently in phase II clinical development and has been shown to improve systolic and diastolic functions and central hemodynamics, increase systolic but not diastolic blood pressure, and decrease substantially heart rate. Irrespective of its clinical utility, the development of istaroxime has evolved our understanding of the clinical importance of inhibiting the Na-K ATPase in order to obtain a clinically significant effect from SERCA2a activation in the setting of myocardial failure.
[/EXPAND]
4. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study Lancet. 2011 Aug 20;378(9792):667-75
[EXPAND Abstract]
BACKGROUND: Decreased systolic function is central to the pathogenesis of heart failure in millions of patients worldwide, but mechanism-related adverse effects restrict existing inotropic treatments. This study tested the hypothesis that omecamtiv mecarbil, a selective cardiac myosin activator, will augment cardiac function in human beings.
METHODS: In this dose-escalating, crossover study, 34 healthy men received a 6-h double-blind intravenous infusion of omecamtiv mecarbil or placebo once a week for 4 weeks. Each sequence consisted of three ascending omecamtiv mecarbil doses (ranging from 0·005 to 1·0 mg/kg per h) with a placebo infusion randomised into the sequence. Vital signs, blood samples, electrocardiographs (ECGs), and echocardiograms were obtained before, during, and after each infusion. The primary aim was to establish maximum tolerated dose (the highest infusion rate tolerated by at least eight participants) and plasma concentrations of omecamtiv mecarbil; secondary aims were evaluation of pharmacodynamic and pharmacokinetic characteristics, safety, and tolerability. This study is registered at ClinicalTrials.gov, number NCT01380223.
FINDINGS: The maximum tolerated dose of omecamtiv mecarbil was 0·5 mg/kg per h. Omecamtiv mecarbil infusion resulted in dose-related and concentration-related increases in systolic ejection time (mean increase from baseline at maximum tolerated dose, 85 [SD 5] ms), the most sensitive indicator of drug effect (r(2)=0·99 by dose), associated with increases in stroke volume (15 [2] mL), fractional shortening (8% [1]), and ejection fraction (7% [1]; all p<0·0001). Omecamtiv mecarbil increased atrial contractile function, and there were no clinically relevant changes in diastolic function. There were no clinically significant dose-related adverse effects on vital signs, serum chemistries, ECGs, or adverse events up to a dose of 0·625 mg/kg per h. The dose-limiting toxic effect was myocardial ischaemia due to excessive prolongation of systolic ejection time.
INTERPRETATION: These first-in-man data show highly dose-dependent augmentation of left ventricular systolic function in response to omecamtiv mecarbil and support potential clinical use of the drug in patients with heart failure.
FUNDING: Cytokinetics Inc.
[/EXPAND]
5. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial Lancet. 2011 Aug 20;378(9792):676-83
[EXPAND Abstract]
BACKGROUND: Many patients with heart failure remain symptomatic and have a poor prognosis despite existing treatments. Decreases in myocardial contractility and shortening of ventricular systole are characteristic of systolic heart failure and might be improved by a new therapeutic class, cardiac myosin activators. We report the first study of the cardiac myosin activator, omecamtiv mecarbil, in patients with systolic heart failure.
METHODS: We undertook a double-blind, placebo-controlled, crossover, dose-ranging, phase 2 trial investigating the effects of omecamtiv mecarbil (formerly CK-1827452), given intravenously for 2, 24, or 72 h to patients with stable heart failure and left ventricular systolic dysfunction receiving guideline-indicated treatment. Clinical assessment (including vital signs, echocardiograms, and electrocardiographs) and testing of plasma drug concentrations took place during and after completion of each infusion. The primary aim was to assess safety and tolerability of omecamtiv mecarbil. This study is registered at ClinicalTrials.gov, NCT00624442.
FINDINGS: T45 patients received 151 infusions of active drug or placebo. Placebo-corrected, concentration-dependent increases in left ventricular ejection time (up to an 80 ms increase from baseline) and stroke volume (up to 9·7 mL) were recorded, associated with a small reduction in heart rate (up to 2·7 beats per min; p<0·0001 for all three measures). Higher plasma concentrations were also associated with reductions in end-systolic (decrease of 15 mL at >500 ng/mL, p=0·0026) and end-diastolic volumes (16 mL, p=0·0096) that might have been more pronounced with increased duration of infusion. Cardiac ischaemia emerged at high plasma concentrations (two patients, plasma concentrations roughly 1750 ng/mL and 1350 ng/mL). For patients tolerant of all study drug infusions, no consistent pattern of adverse events with either dose or duration emerged.
INTERPRETATION: Omecamtiv mecarbil improved cardiac function in patients with heart failure caused by left ventricular dysfunction and could be the first in class of a new therapeutic agent.
Pharmaceutical company Eli Lilly has announced the withdrawal of its severe sepsis drug activated protein C, or drotrecogin alfa (proprietary name Xigris). This is because the PROWESS-SHOCK study, now complete, showed no benefit in its primary endpoint of 28 day mortality when compared with placebo in septic shock patients. There was also no benefit in a subgroup of patients with protein C deficiency, and no significant increased risk of severe bleeding.
The European Medicines Agency’s Instructions are:
At this stage physicians should not initiate treatment with Xigris in new patients and should stop ongoing treatment
Patients with severe sepsis and an elevated lactate who appear to be normotensive had a mortality similar to those presenting with hypotension. This is demonstrated in a new study on patients who were recruited to a study I have reported before.
The so-called ‘cryptic shock’ group was defined by a systolic BP of at least 90 mmHg, suggesting to me not so much that normotension and hypotension are prognostically equivalent, but that we should perhaps redefine hypotension in sepsis, as we should probably be doing in trauma. Alternatively (and preferably), the BP should be interpreted in the context of what is known to be or likely to be normal for that patient. For example, a systolic BP of 105 mmHg in a 75 year old male would be be ringing serious alarm bells for me in a febrile patient, and I would be working them up for severe sepsis from the start. Interestingly in this study, the cryptic shock group had a higher proportion of patients with diabetes and/or end stage renal disease – diagnoses one would expect to be associated with hypertension – and the median (and IQR) systolic BP in this group was 108 (92, 126). So, although this shock may have been ‘cryptic’ as opposed to ‘overt’ by the definition applied in the paper (a cut off of 90 mmHg), it is likely that some of the patients in the cryptic group were hypotensive compared with their usual blood pressure.
These observations do not detract from a key message the authors include in their discussion, with which I wholeheartedly agree: “These data highlight the need to screen patients for signs of occult hypoperfusion, and given the high mortality rate associated with an elevated serum lactate, also suggest that patients with biochemical evidence of inadequate oxygen delivery despite normal blood pressure should be included in early sepsis resuscitation pathways.”
This paper makes an important contribution to the sepsis literature by warning against the dismissal of an elevated serum lactate in the setting of apparent haemodynamic stability as being a less acutely ill patient than one presenting with overt hypotension. It provides a reminder to check the lactate in patients with infection and signs of systemic inflammatory response, since this may provide the only early evidence of hypoperfusion.
Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock Resuscitation. 2011 Oct;82(10):1289-1293
[EXPAND Click to read abstract]
Introduction We sought to compare the outcomes of patients with cryptic versus overt shock treated with an emergency department (ED) based early sepsis resuscitation protocol.
Methods Pre-planned secondary analysis of a large, multicenter ED-based randomized controlled trial of early sepsis resuscitation. All subjects were treated with a quantitative resuscitation protocol in the ED targeting 3 physiological variables: central venous pressure, mean arterial pressure and either central venous oxygen saturation or lactate clearance. The study protocol was continued until all endpoints were achieved or a maximum of 6 h. Outcomes data of patients who were enrolled with a lactate ≥4 mmol/L and normotension (cryptic shock) were compared to those enrolled with sustained hypotension after fluid challenge (overt shock). The primary outcome was in-hospital mortality.
Results A total of 300 subjects were enrolled, 53 in the cryptic shock group and 247 in the overt shock group. The demographics and baseline characteristics were similar between the groups. The primary endpoint of in-hospital mortality was observed in 11/53 (20%, 95% CI 11–34) in the cryptic shock group and 48/247 (19%, 95% CI 15–25) in the overt shock group, difference of 1% (95% CI −10 to 14; log rank test p = 0.81).
Conclusion Severe sepsis with cryptic shock carries a mortality rate not significantly different from that of overt septic shock. These data suggest the need for early aggressive screening for and treatment of patients with an elevated serum lactate in the absence of hypotension.
I’ve been (and remain) critical of the use of CVP to determine ‘filling status’ or more accurately volume-responsiveness, even using CVP trends; I’m generally in agreement with Dr Marik’s bold statement that “CVP should not be used to make clinical decisions regarding fluid management”1. However there might now appear to be a way of using CVP for this purpose.
Increasing PEEP in patients undergoing positive pressure ventilation can increase the CVP. It has been demonstrated in a small study of cardiac surgical patients2 that the degree to which a 10cmH2O increase in PEEP changes the CVP correlates with fluid responsiveness. The fluid responsiveness was determined by the change in cardiac output measured by thermodilution after a passive leg raise.
There are a number of limitations to this study that should prevent us from immediately extrapolating this method of determining fluid responsiveness to our ED / critical care patients, but the concept is interesting. This can be added to the growing pile of dynamic measures of circulatory filling.
Background Changes in central venous pressure (CVP) rather than absolute values may be used to guide fluid therapy in critically ill patients undergoing mechanical ventilation. We conducted a study comparing the changes in the CVP produced by an increase in PEEP and stroke volume variation (SVV) as indicators of fluid responsiveness. Fluid responsiveness was assessed by the changes in cardiac output (CO) produced by passive leg raising (PLR).
Methods In 20 fully mechanically ventilated patients after cardiac surgery, PEEP was increased +10 cm H2O for 5 min followed by PLR. CVP, SVV, and thermodilution CO were measured before, during, and directly after the PEEP challenge and 30° PLR. The CO increase >7% upon PLR was used to define responders.
Results Twenty patients were included; of whom, 10 responded to PLR. The increase in CO by PLR directly related (r=0.77, P<0.001) to the increase in CVP by PEEP. PLR responsiveness was predicted by the PEEP-induced increase in CVP [area under receiver-operating characteristic (AUROC) curve 0.99, P<0.001] and by baseline SVV (AUROC 0.90, P=0.003). The AUROC's for dCVP and SVV did not differ significantly (P=0.299).
Conclusions Our data in mechanically ventilated, cardiac surgery patients suggest that the newly defined parameter, PEEP-induced CVP changes, like SVV, appears to be a good parameter to predict fluid responsiveness.
1. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008 Jul;134(1):172-8 Full Text Link
2. Predicting cardiac output responses to passive leg raising by a PEEP-induced increase in central venous pressure, in cardiac surgery patients. Br J Anaesth. 2011 Aug;107(2):251-7