Tag Archives: blunt

The REAL Shocked Patient

I promised to put some summary notes on the site for those who attended my talk on ‘The REAL Shocked Patient’ for the Australian College of Ambulance Professionals on Tuesday 21st February 2012, so here they are:

Shocked patients are important – they comprise most of the ‘talk and die’ caseload that preoccupies pub conversations between emergency physicians
It’s easy to mistake these patients as less sick than, say, hypoxic ones, but oxygen delivery to the tissues doesn’t just depend on oxygen!

Here’s a dead wombat – someone in the audience knew a worrying amount about wombat anuses.

The 4 Hs and 4 Ts aren’t a very cognitively practical mnemonic for the causes of PEA arrest (which is an extreme form of hypotension)

I prefer the ‘3 plus 3’ rule, which breaks down the causes into three – volume, pump, and obstruction. Obstruction is further broken down into three causes, being tension pneumothorax, cardiac tamponade, and pulmonary embolism:

Let’s look at some cases of shock caused by volume deficit, pump falure, or one of the three causes of obstruction to the circulation:
 
Case 1: The hypotensive motorcyclist
His low back pain suggested pelvic fracture
Think of ‘blood on the floor and four more’ (chest, abdomen, pelvis/retroperitoneum, long bones) and consider non-bleeding causes such as neurogenic (spinal injury), tension pneumothorax, cardiac tamponade, and finally medical causes/iatrogenic (drug) causes.
Don’t underestimate the importance of pelvis and limb splinting as a haemorrhage control technique in blunt trauma
Ultrasound in flight made thoracic or abdominal bleeding very unlikely, and ruled out tamponade and pneumothorax
Although he was hypotensive, no fluids were given, as he was mentating normally and peripherally well perfused, with a radial pulse. If we gave fluid, we would titrate to the presence of a radial pulse (in blunt trauma) but we don’t want to ‘pop the clot’ by elevating the BP, or make him less able to form effective clots by diluting his blood with crystalloid.
Mortality in trauma sharply rises with systolic BP below 105-110, so recalibrate your definition of hypotension in terms of when you might be concerned, and which patients may benefit from triage to a trauma centre.
 
Case 2: The child crushed by a wall
Caution regarding lower limb infusions in patients with abdominal / pelvic injuries – the fluid may not get to the heart.

The classification of shock into four classes is crap. Never let the absence of a tachycardia reassure you.


Intraosseous is awesome, and EZ-IO has the best track record by far.
 
Case 3: The boy stabbed in the upper thigh
In penetrating limb trauma, prehospital options include pressure, elevation, tourniquet, and haemostatic dressings. Foley catheters have been used successfully in transition zones such as the neck or groin.
 
Case 4: Haematemesis
Should we apply the same principles of permissive hypotension to patients with ‘medical’ bleeding?
The Trendelenburg position doesn’t make a lot of sense – no need to head down the patient, although the act of elevating the legs may ‘autoinfuse’ a bolus of blood to the core circulation, and is recommended by some bodies as a first aid manoeuvre for hypotensive patients in the field prior to iv fluids.
 
Case 5: The overdose patient with a low blood pressure but otherwise fine.
When don’t I Worry about hypotension? When the patient is:

  • With it
  • Warm peripherally
  • Weeing
  • and (in hospital) Without a raised lactate


Case 6: Two cases of pump failure: STEMI and complete heart block
Adrenaline infusions can be simply made with a 1mg 1:10000 minijet diluted in a litre of saline and dripped through a peripheral line titrated to BP / HR / mentation / pulses.
In complete heart block (or other bradycardias) with hypotension, percussion pacing is an option of you don’t have access to transcutaneous or transvenous pacing. If you get capture, it’s as effective in terms of stroke volume as a pacing wire.
 
Case 7: Obstructive shock – tamponade cases
…with resolution of hypotension after drainage by emergency physicians who identified the tamponade on ultrasound, even though they didn’t suspect it clinically. It can be a surprise!
 
Case 8: Obstructive shock – tension pneumothorax
Patients are often agitated and won’t lie flat. They may complain of ‘tight’ breathing. Crackles and/or wheezes may be heard. The classic description of deviated trachea, absent breath sounds, and hyperresonance are the exception, not the rule. Be suspicious and always palpate for subcutaneous emphysema.
Don’t assume a needle decompression will work – there is debate about the best site but in some adults a standard needle won’t reach the pleural space. If you need to place more than one needle, go for it. As physicians, we do thoracostomies to ensure we’ve hit the spot.
 
Case 9: Obstructive shock – pulmonary embolism
A tough one prehospital, as the hypotensive ones need fibrinolysis. Fluid may help the hypotension but too much can overdistend the right ventricle which can then impair left ventricular filling, and worsen the patient’s circulatory state. Once again, ultrasound may be invaluable in highlighting PE as a possible cause for shock.
 
Case 10: Penetrating trauma to the ‘box’ – chest and upper abdomen.
If these patients arrest due to tamponade, early (< 10 minutes) clamshell thoracotomy can be life saving, which means it may need to be done pre-hospital by a HEMS physician to provide a chance of survival. Be on the look out for these and if in doubt activate a medical team (in New South Wales). Like with tension pneumothorax, these patients may be extremely agitated as a manifestation of their shock.
 
Case 11: Confused elderly male with pyrexia and smelly urine who appears ostensibly ‘normotensive’
…but how many 82 year olds do you know with a BP of 110/57? His acute confusion may be a manifestation of shock and he needs aggressive evaluation in hospital including a lactate measurement. Don’t be afraid to give this guy fluids in the field – you can make a big difference here.
Here are five of the myths I promised to expose:

So…shocked patients can talk and die. Don’t let that happen. Shocked patients can be normotensive, and hypotensive patients might not be shocked. Have a plan for how you might evaluate the 3+3 causes in your setting and what you can use from your medication and equipment list to manage volume, pump, and obstruction issues. You will save many lives if you become a serious shock detective.

Pre-hospital thoracotomy and aortic clamping in blunt trauma

This is one of those ‘wow they really do that!?‘ papers…Patients undergoing thoracotomy and aortic clamping for pre-hospital blunt traumatic arrest either in the field or in the ED were evaluated for the outcome of survival to ICU admission. None of the 81 patients who underwent this intervention survived to discharge.
Field thoracotomy resulted in shorter times from arrival of the emergency medical team to performance of the thoracotomy (19.2 vs 30.7 mins). Patients who arrested in front of the team had a greater ICU admission rate than those who were already in cardiac arrest when the team arrived (70% vs 8%).
One may argue against an intervention that seems to have resulted in no benefit to the patient. However a counterargument might be that an ICU admission allows for better end-of-life management for grieving families, and for the possibility of organ donation.
Interestingly, there were some neurologically intact survivors of emergency thoracotomy for blunt trauma by this service, although they were excluded from the study for either (i) receiving the field thoracotomy before full arrest or (ii) arresting after arrival in the ED.
Role of resuscitative emergency field thoracotomy in the Japanese helicopter emergency medical service system
Resuscitation. 2009 Nov;80(11):1270-4

Thoracostomy in blunt traumatic arrest

37 patients with blunt traumatic cardiac arrest underwent attempted resuscitation by a HEMS crew over a four year period. Chest decompression was performed in 18 cases (17 thoracostomy, one needle decompression). The procedure revealed evidence of chest injury in 10 cases (pneumothorax, haemothorax, massive air leak) and resulted in return of circulation and survival to hospital in four cases. All four cases died of associated major head injury, although one became a heart beating organ donor. Only half of the cases found to have pneumothorax demonstrated clinical signs of one prior to chest decompression.
The authors state: ‘Relying on clinical signs of the thorax alone will not identify all patients with these injuries, and our data support extending the practice into all patients with a suitable mechanism of injury together with external evidence of chest injury.’
Chest decompression during the resuscitation of patients in prehospital traumatic cardiac arrest
Emerg Med J. 2009 Oct;26(10):738-40