An interesting study from Germany examined prehospital thoracostomy tube (TT) placement by physicians working in the field. Of 69 patients who received them, 67 underwent prehospital intubation. 88 TT were placed in the 69 patients.
There were 19/88 (22%) radiologic chest tube misplacements (defined as too far in the chest, twisted, or bent). The position of 10/88 (11%) chest tubes had to be corrected. None of the patients with a TT had a “not-decompressed” pneumothorax or a chest tube placed below the diaphragm or into a solid organ.
Roughly half were placed in the ‘Monaldi’ position (the second or third intercostal space in the midclavicular line)….. Monaldi position
…..and half in the Bülau position (fourth or fifth intercostal space in the midaxillary line). Bülau position
There was no difference in the misplacement rates between the two positions although interestingly helicopter doctors (as opposed to ground response) more often opted for the Monaldi position.
It is not possible to tell from the results whether the TT insertion was indicated in all cases. Also, it would be interesting to know whether TT insertion preceded or followed tracheal intubation. While it is heartening that these physicians do not routinely rely on needle decompression, I cannot fathom while simple open thoracostomy was not used, avoiding the risk of tube misplacement and saving time.
See this post for a more thorough review of open thoracostomy and the limitations of needle decompression.
Objectives. To evaluate the frequency of use, placement site, success and misplacement rates, and need for intervention for tube thoracostomies (TTs), and the complications with endotracheal intubation associated with TT in the prehospital setting.
Methods. We performed a five-year, retrospective study using the records of 1,065 patients who were admitted to the trauma emergency room at a university hospital and who had received chest radiographs or computed tomography (CT) scans within 30 minutes after admission.
Results. Seven percent of all patients received a TT (5% unilateral, 2% bilateral). Ninety-seven percent of all patients with a TT were endotracheally intubated. The success rate for correctly placed chest tubes was 78%. Twenty-two percent of the chest tubes were misplaced (i.e., too far in the chest, twisted, or bent); half of those had to be corrected, with one needing to be replaced. There were no statistical differences in the frequency of Monaldi or Bülau positions, or the frequency of left or right chest TT. In addition, the two positions did not differ in misplacement rates or the need for intervention. Helicopter emergency medical services physicians used the Monaldi position significantly more frequently than the Bülau position. In-hospital physicians performing interhospital transfer used the Bülau position significantly more frequently, whereas ground emergency medical physicians had a more balanced relationship between the two positions. Tube thoracostomy had no influence on endotracheal tube misplacement rates, and vice versa.
Conclusion. Tube thoracostomy positioning mostly depends on the discretion of the physician on scene. The Monaldi and Bülau positions do not differ in misplacement or complication rates.
In hospital, the detection of cardiac standstill with ultrasound predicts a fatal outcome from cardiac arrest with a high degree of accuracy. A similar finding has been made in the prehospital setting. Interestingly, it was a better predictor than other commonly recognised factors associated with outcome: the presence of asystole, down time, bystander CPR, or end-tidal CO2 levels.
Introduction. The prognostic value of emergency echocardiography (EE) in the management of cardiac arrest patients has previously been studied in an in-hospital setting. These studies mainly included patients who underwent cardiopulmonary resuscitation (CPR) by emergency medicine technicians at the scene and who arrived at the emergency department (ED) still in a state of cardiac arrest. In most European countries, cardiac arrest patients are normally treated by physician-staffed emergency medical services (EMS) teams on scene. Transportation to the ED while undergoing CPR is uncommon. Objective. To evaluate the ability of EE to predict outcome in cardiac arrest patients when it is performed by ultrasound-inexperienced emergency physicians on scene.
Methods. We performed a prospective, observational study of nonconsecutive, nontrauma, adult cardiac arrest patients who were treated by physician-staffed urban EMS teams on scene. Participating emergency physicians (EPs) received a two-hour course in EE during CPR. After initial procedures were accomplished, EE was performed during a rhythm and pulse check. A single subxiphoid, four-chamber view was required for study enrollment. We defined sonographic evidence of cardiac kinetic activity as any detected motion of the myocardium, ranging from visible ventricular fibrillation to coordinated ventricular contractions. The CPR had to be continued for at least 15 minutes after the initial echocardiography. No clinical decisions were made based on the results of EE.
Results. Forty-two patients were enrolled in the study. The heart could be visualized successfully in all patients. Five (11.9%) patients survived to hospital admission. Of the 32 patients who had cardiac standstill on initial EE, only one (3.1%) survived to hospital admission, whereas four out of 10 (40%) patients with cardiac movement on initial EE survived to hospital admission (p = 0.008). Neither asystole on initial electrocardiogram nor peak capnography value, age, bystander CPR, or downtime was a significant predictor of survival. Only cardiac movement was associated with survival, and cardiac standstill at any time during CPR resulted in a positive predictive value of 97.1% for death at the scene.
Conclusion. Our results support the idea of focused echocardiography as an additional criterion in the evaluation of outcome in CPR patients and demonstrate its feasibility in the prehospital setting.
I’ve been too busy to blog literature updates for a couple of weeks since I and my colleagues have been flat out running a two week training course in prehospital and retrieval medicine.
Our Helicopter Emergency Medical Service physicians and paramedics care for a wide range of adult and paediatric trauma and critical care patients in some challenging environments. We therefore need to provide a fairly comprehensive induction course for new recruits.
The new guys did us proud. They just need to stay this awesome.