Tag Archives: Trauma

London Calling – part 3

Notes from Day 4 of the London Trauma Conference
The highlight for me was Mr Jonny Morrison speaking on Resuscitative Emergency Balloon Occlusion of the Aorta (REBOA). He is a British military surgeon currently out in Texas studying balloon occlusion of the aorta on pigs. Looking at trauma deaths, the next unexpected survivors will come from the uncontrollable haemorrhage group (truncal and junctional zones). This is by no means a new technique – described in the 1950’s during the Korean War – but like the early Star Wars chapters, needed to wait for technology to advance to make it feasible. It has the effect of cross clamping the aorta which provides afterload support, increases cerebral and coronary perfusion and provides proximal inflow control – without the mess of a resuscitative thoracotomy and greater access.
The placement of the balloon is determined by the location of the injury (see photo) and falls into two zones. Zone 1 is the thoracic aorta and is used for truncal haemorrhage control, avoid Zone 2 where the celiac axis etc originates and Zone 3 is infrarenal, used for junctional bleeding and pelvic haemorrhage.
His studies have determined that for Zone 3 amenable bleeds balloon occlusion up to 60min is the optimal time. Any longer and the debt of the metabolic load is paid by increased inotropic support requirements. He also compared REBOA to the current standard treatment for junctional injuries, Celox™ gauze. If coagulation is normal then both treatments perform similarly, the benefit is seen in coagulopathic patients where REBOA outperforms the gauze.
Has REBOA been used on humans? Yes a case series of 13 – the technique improved the BP allowing time to get to definitive surgery (blogged here 2.5 years ago!).
The Zone 1 studies are looking at continuous vs intermittent balloon occlusion. The jury is still out as to which is better. With the intermittent occlusion (20min on, 1min off) there are inevitably some losses when the balloon is deflated, conversely the metabolic debt generated by continuous occlusion is too great in some also leading to deaths.
What was very clear is that for this technique to have an impact it must be delivered proactively and pre-hospital. The challenges that need to be overcome are access to the femoral artery and blind accurate placement.
Prof Karim Brohi brought the conference to a close with a summary of what we have learned about coagulation in trauma this year. Here are three things;

  • FFP is good but as 43% deaths due to trauma in the UK are secondary to bleeding and occur in the first 3hr we are failing our patients by administering the treatment on average at 2.5hrs.
  • Fibrinogen levels are low in coagulopathic trauma patients; we should give cryoprecipitate early and aim for Fib ≥2.0
  • And finally whilst TEG is recommended to guide treatment and can provide results within 5 min, there are some aspects of coagulation it does not detect i.e. fibrinolysis was only detected in 8% of coagulopathic trauma patients – when measured in the plasma it was then detectable in 80%.

These are the highlights of the 2012 London Trauma Conference. I hope this whistle stop tour through these days has been informative and though provoking. I can assure you telephone hacking was not used to bring you this information and to my knowledge is correct.
This is Lou Chan, roving reporter for Resus ME! signing off.

 

 

‘London raises her head, shakes off the debris of the night from her hair, and takes stock of the damage done. The sign of a great fighter in the ring is can he get up from a fall after being knocked down… London does this every morning.’

 
 

London Calling – part 2

Notes from Days 2 & 3 of the London Trauma Conference
Day 2 of the LTC was really good. There were some cracking speakers who clearly had the ‘gift’ when it comes to entertaining the audience. No death by PowerPoint here (although it seems Keynote is now the presentation software of choice!). The theme of the day was prehospital care and major incidents.
The golden nuggets to take away include: (too many to list all of course)

  • ‘Pull’ is the key to rapid extrication from cars if time critical from the Norweigan perspective. Dr Lars Wik of the Norweigen air ambulance presented their method of rapid extrication. Essentially they drag the car back on the road or away from what ever it has crashed into to control the environment and make space (360 style). They put a paramedic in the car whilst this is happening. They then make a cut in the A post near the roof, secure the rear of the car to a fire truck or fixed object with a chain and put another chain around the lower A post and steering wheel that is then winched tight. This has the effect of ‘reversing’ the crash and a few videos showed really fast access to the patient. The car seems to peel open. As they train specifically for it, there doesn’t seem to be any safety problems so far and its much quicker than their old method. I guess it doesnt matter really how you organise a rapid extrication method as long as it is trained for and everyone is on the same page.
  • Dr Bob Winter presented his thoughts on hangings – to date no survivor of a non-judicial hanging has had a C-spine injury, so why do we collar them? Also there seems no point in cooling them. All imaging and concern for these patients should be based on the significant soft tissue injury that can be caused around the neck.
  • Drownings – if the patient is totally submerged probably reasonable to search for 30mins in water that is >6 degrees or 90mins if <6 degrees. After that it becomes a body recovery (unless there is an air pocket or some exceptional circumstance). Patients that have drowned should have early ventilatory support if they show any signs of resp distress.
  • Drs Julian Thompson and Mark Byers reassured us on a variety of safety issues at major incidents. It seems the risk to rescuers from secondary bombs at scene is low. Very few terrorist attacks world wide, ever, have had secondary devices so rescuers should be reassured (a bit). Greatest risk to the rescuer, like always, are the silly simple things that are a risk every day, like tripping over your own feet! With reference to chemical incidents, simple PPE seems to be sufficient for the vast majority of incidents, even fairly significant chemical ones, all this mucking about in full air tight suits is probably pointless and means patients cant be treated (at all). This led to the debate of how much risk should we, as rescue staff, accept? Clearly there are no absolute answers but minimising all risk to the rescuer is often at conflict with your ability to rescue. Where the balance should lie is a matter for organisations and individuals I guess.
  • Sir Prof Keith Porter also gave us an update on the future of Prehospital emergency medicine as a recognised medical specialty. As those in the know, know, the specialty has been recognised by the GMC and the first draft of trainees are currently in post. More deaneries will be following suit soon to begin training but it is likely to take some time to build up large numbers of trained specialists. Importantly for those of us who already have completed our training there will be an option to sub specialise in PHEM but it will involve undertaking the FIMC exam. Great, more exams – see you there.

 
Day 3 – Major trauma
The focus of day 3 was that of damage control. Damage control surgery and damage control resucitation. We had indepth discussions about how to manage pelvic trauma and some of the finer points of trauma resuscitation.
Specific points raised were:

  • Pelvic binders are great and can replace an ex fix if the abdomen needs opening to fix a spleen for example.
  • You can catheterise patients with pelvic fractures (one gentle try).
  • Most pelvic bleeds are venous which is why surgeons who can pack a pelvis is better than a radiologist who can mainly only treat arterial bleeds.
  • Coagulopathy in trauma is not DIC and is probably caused by peripheral hypoperfusion.
  • All the standard clotting tests that we use (INR etc) are useless and take too long to do. ROTEM or TEG is much better but still not perfect.

Also, as I am sure will please many – pressure isn’t flow so dont use pressors in trauma!
 
 


Chris Hill is an emergency and prehospital care physician based in the United Kingdom

A whole bunch of trauma guidelines

The Eastern Association for the Surgery of Trauma has published a number of helpful evidence-based guidelines for trauma management, and many of them are included in this month’s Journal of Trauma and Acute Care Surgery
Here are brief snippets from some of them. All the guidelines can be viewed or downloaded in full for free here.
 
Nonoperative management of blunt hepatic injury

  • Nonoperative management of blunt hepatic injuries currently is the treatment modality of choice in hemodynamically stable patients, irrespective of the grade of injury or patient age.
  • Patients presenting with hemodynamic instability and peritonitis still warrant emergent operative intervention.
  • Intravenous contrast enhanced computed tomographic scan is the diagnostic modality of choice for evaluating blunt hepatic injuries.

 
Selective nonoperative management of blunt splenic injury

  • Nonoperative management of blunt splenic injuries is now the treatment modality of choice in hemodynamically stable patients, irrespective of the grade of injury, patient age, or the presence of associated injuries.
  • Patients presenting with hemodynamic instability and peritonitis still warrant emergent operative intervention.
  • Intravenous contrast enhanced computed tomographic scan is the diagnostic modality of choice for evaluating blunt splenic injuries.

 
Screening for blunt cardiac injury

  • Electrocardiogram (ECG) alone is not sufficient to rule out BCI.
  • BCI can be ruled out only if both ECG result and troponin I level are normal, a significant change from the previous guideline.
  • Patients with new ECG changes and/or elevated troponin I should be admitted for monitoring.
  • Echocardiogram is not beneficial as a screening tool for BCI and should be reserved for patients with hypotension and/or arrhythmias.
  • The presence of a sternal fracture alone does not predict BCI.
  • Cardiac computed tomography or magnetic resonance imaging can be used to differentiate acute myocardial infarction from BCI in trauma patients.

 
Evaluation and management of penetrating lower extremity arterial trauma

  • Expedited triage of patients is possible with physical examination and/or the measurement of ankle-brachial indices.
  • Computed tomographic angiography has become the diagnostic study of choice when imaging is required.
  • Tourniquets and intravascular shunts have emerged as adjuncts in the treatment of penetrating lower extremity arterial trauma.

 
Prophylactic antibiotic use in penetrating abdominal trauma

  • There is evidence to support a Level I recommendation that prophylactic antibiotics should only be administered for 24 hours in the presence of a hollow viscus injury.
  • There are no data to support continuing prophylactic antibiotics longer than 24 hours in damage control laparotomy.

 
Screening for thoracolumbar spinal injuries in blunt trauma

  • Multidetector computed tomographic scans have become the screening modality of choice and the criterion standard in screening for TLS injuries.
  • Patients without altered mentation or significant mechanism may be excluded by clinical examination without imaging.
  • Patients with gross neurologic deficits or concerning clinical examination findings with negative imaging should receive a magnetic resonance imaging expediently, and the spine service should be consulted

 
Emergency tracheal intubation immediately following traumatic injury

  • The decision to intubate a patient following traumatic injury is based on multiple factors, including the need for oxygenation and ventilation, the extent and mechanism of injury, predicted operative need, or progression of disease.
  • Rapid sequence intubation with direct laryngoscopy continues to be the recommended method for ETI, although the use of airway adjuncts such as blind insertion supraglottic devices and video laryngoscopy may be useful in facilitating successful ETI and may be preferred in certain patient populations.
  • There is no pharmacologic induction agent of choice for ETI; however, succinylcholine is the neuromuscular blockade agent recommended for rapid sequence intubation.

 
Presumptive antibiotic use in tube thoracostomy for traumatic hemopneumothorax

  • Routine presumptive antibiotic use to reduce the incidence of empyema and pneumonia in TT for traumatic hemopneumothorax is controversial; however, there is insufficient published evidence to support any recommendation either for or against this practice.

 
Evaluation and management of geriatric trauma

  • Effective evidence-based care of aging patients necessitates aggressive triage, correction of coagulopathy, and limitation of care when clinical evidence points toward an overwhelming likelihood of poor long-term prognosis

 
Management of pulmonary contusion and flail chest

  • Patients with PC-FC should not be excessively fluid restricted but should be resuscitated to maintain signs of adequate tissue perfusion.
  • Obligatory mechanical ventilation in the absence of respiratory failure should be avoided.
  • The use of optimal analgesia and aggressive chest physiotherapy should be applied to minimize the likelihood of respiratory failure.
  • Epidural catheter is the preferred mode of analgesia delivery in severe flail chest injury.
  • Paravertebral analgesia may be equivalent to epidural analgesia and may be appropriate in certain situations when epidural is contraindicated.
  • A trial of mask continuous positive airway pressure should be considered in alert patients with marginal respiratory status.
  • Patients requiring mechanical ventilation should be supported in a manner based on institutional and physician preference and separated from the ventilator at the earliest possible time.
  • Positive end-expiratory pressure or continuous positive airway pressure should be provided.
  • High-frequency oscillatory ventilation should be considered for patients failing conventional ventilatory modes. Independent lung ventilation may also be considered in severe unilateral pulmonary contusion when shunt cannot be otherwise corrected.
  • Surgical fixation of flail chest may be considered in cases of severe flail chest failing to wean from the ventilator or when thoracotomy is required for other reasons.
  • Self-activating multidisciplinary protocols for the treatment of chest wall injuries may improve outcome and should be considered where feasible.
  • Steroids should not be used in the therapy of pulmonary contusion.
  • Diuretics may be used in the setting of hydrostatic fluid overload in hemodynamically stable patients or in the setting of known concurrent congestive heart failure.

 
Evaluation and management of small-bowel obstruction

  • Level I evidence now exists to recommend the use of computed tomographic scan, especially multidetector computed tomography with multiplanar reconstructions, in the evaluation of patients with SBO because it can provide incremental clinically relevant information over plains films that may lead to changes in management.
  • Patients with evidence of generalized peritonitis, other evidence of clinical deterioration, such as fever, leukocytosis, tachycardia, metabolic acidosis, and continuous pain, or patients with evidence of ischemia on imaging should undergo timely exploration.
  • The remainder of patients can safely undergo initial nonoperative management for both partial and complete SBO.
  • Water-soluble contrast studies should be considered in patients who do not clinically resolve after 48 to 72 hours for both diagnostic and potential therapeutic purposes.
  • Laparoscopic treatment of SBO has been demonstrated to be a viable alternative to laparotomy in selected cases.

 
2012 Eastern Association for the Surgery of Trauma (EAST) Practice Management Guidelines Supplement
J Trauma Acute Care Surg. 2012 Nov;73(5 Suppl 4)

Prehospital ketamine analgesia

A prospective open-label randomised controlled trial in prehospital patients receiving morphine for traumatic pain compared intravenous ketamine with additional morphine.
Analgesia was superior in the ketamine group, with some minor (expected) adverse effects.
This small study adds to the prehospital ketamine literature and provides some support to ambulance services considering introducing ketamine analgesia.


Study objective: We assess the efficacy of intravenous ketamine compared with intravenous morphine in reducing pain in adults with significant out-of-hospital traumatic pain.

Methods: This study was an out-of-hospital, prospective, randomized, controlled, open-label study. Patients with trauma and a verbal pain score of greater than 5 after 5 mg intravenous morphine were eligible for enrollment.
Patients allocated to the ketamine group received a bolus of 10 or 20 mg, followed by 10 mg every 3 minutes thereafter. Patients allocated to the morphine alone group received 5 mg intravenously every 5 minutes until pain free. Pain scores were measured at baseline and at hospital arrival.

Results: A total of 135 patients were enrolled between December 2007 and July 2010. There were no differences between the groups at baseline. After the initial 5-mg dose of intravenous morphine, patients allocated to ketamine received a mean of 40.6 mg (SD 25 mg) of ketamine. Patients allocated to morphine alone received a mean of 14.4 mg (SD 9.4 mg) of morphine. The mean pain score change was 5.6 (95% confidence interval [CI] 6.2 to 5.0) in the ketamine group compared with 3.2 (95% CI 3.7 to 2.7) in the morphine group. The difference in mean pain score change was 2.4 (95% CI 3.2 to 1.6) points. The intravenous morphine group had 9 of 65 (14%; 95% CI 6% to 25%) adverse effects reported (most commonly nausea [6/65; 9%]) compared with 27 of 70 (39%; 95% CI 27% to 51%) in the ketamine group (most commonly disorientation [8/70; 11%]).

Conclusion: Intravenous morphine plus ketamine for out-of-hospital adult trauma patients provides analgesia superior to that of intravenous morphine alone but was associated with an increase in the rate of minor adverse effects.

Morphine and Ketamine Is Superior to Morphine Alone for Out-of-Hospital Trauma Analgesia: A Randomized Controlled Trial
Ann Emerg Med. 2012 Jun;59(6):497-503

Needle decompression: it's still not going to work

A pet topic that keeps coming up here is management of tension pneumothorax. Plenty of studies demonstrate that traditionally taught needle thoracostomy may fail, and open, or ‘finger’ thoracostomy is recommended for the emergency management of tension pneumothorax in a patient who is being ventilated with positive pressure (including those patients in cardiac arrest).
A recent CT scan-based study of adult trauma patients makes the case that needle decompression with a standard iv cannula would be expected to fail in 42.5% of cases at the second intercostal space (ICS) compared with 16.7% at the fifth ICS at the anterior axillary line (AAL).
The authors add an important point: “As BMI increases, there is a stepwise increase in chest wall thickness, further compounding the difficulty of needle placement in all but the lowest BMI quartile for the second ICS.”
An accompanying editorial cautions that the proximity of the heart may confer a safety issue if a needle is inserted blindly into the left 5th ICS at the AAL.


Objective To compare the distance to be traversed during needle thoracostomy decompression performed at the second intercostal space (ICS) in the midclavicular line (MCL) with the fifth ICS in the anterior axillary line (AAL).

Design Patients were separated into body mass index (BMI) quartiles, with BMI calculated as weight in kilograms divided by height in meters squared. From each BMI quartile, 30 patients were randomly chosen for inclusion in the study on the basis of a priori power analysis (n = 120). Chest wall thickness on computed tomography at the second ICS in the MCL was compared with the fifth ICS in the AAL on both the right and left sides through all BMI quartiles.

Setting Level I trauma center.

Patients Injured patients aged 16 years or older evaluated from January 1, 2009, to January 1, 2010, undergoing computed tomography of the chest.

Results A total of 680 patients met the study inclusion criteria (81.5% were male and mean age was 41 years [range, 16-97 years]). Of the injuries sustained, 13.2% were penetrating, mean (SD) Injury Severity Score was 15.5 (10.3), and mean BMI was 27.9 (5.9) (range, 15.4-60.7). The mean difference in chest wall thickness between the second ICS at the MCL and the fifth ICS at the AAL was 12.9 mm (95% CI, 11.0-14.8; P < .001) on the right and 13.4 mm (95% CI, 11.4-15.3; P < .001) on the left. There was a stepwise increase in chest wall thickness across all BMI quartiles at each location of measurement. There was a significant difference in chest wall thickness between the second ICS at the MCL and the fifth ICS at the AAL in all quartiles on both the right and the left. The percentage of patients with chest wall thickness greater than the standard 5-cm decompression needle was 42.5% at the second ICS in the MCL and only 16.7% at the fifth ICS in the AAL.

Conclusions In this computed tomography–based analysis of chest wall thickness, needle thoracostomy decompression would be expected to fail in 42.5% of cases at the second ICS in the MCL compared with 16.7% at the fifth ICS in the AAL. The chest wall thickness at the fifth ICS AAL was 1.3 cm thinner on average and may be a preferred location for needle thoracostomy decompression.

Radiologic evaluation of alternative sites for needle decompression of tension pneumothorax
Arch Surg. 2012 Sep 1;147(9):813-8

Thoracoabdominal trauma outcomes

In what the authors describe as ‘the largest and most rigorous description of blunt thoracoabdominal injury to date’, we learn some interesting things and are reminded of some others:

Most solid organ injuries in the abdomen are managed non-operatively

Thoracotomy – especially non-resuscitative thoracotomy – is rare

In patients with thoracoabdominal trauma, the overwhelming majority of injuries requiring operative intervention were found in the abdomen, therefore..

…excluding those patients in extremis requiring a resuscitative thoracotomy, the initial incision, without directive radiological information, belongs in the abdomen

Concomitant thoracic injury did not preclude nonoperative management of abdominal solid organ injury

This is a really interesting paper providing important data on the outcomes and management of a patient group that frequently produces management dilemmas in trauma centres.
The double jeopardy of blunt thoracoabdominal trauma
Arch Surg. 2012 Jun;147(6):498-504
[EXPAND Click for abstract]


OBJECTIVES: To examine the specific injuries, need for operative intervention, and clinical outcomes of patients with blunt thoracoabdominal trauma.

DESIGN: Trauma registry and medical record review.

SETTING: Level I trauma center in Los Angeles, California.

PATIENTS: All patients with thoracoabdominal injuries from January 1996 to December 2010.

MAIN OUTCOME MEASURES: Injuries, incidence and type of operative intervention, clinical outcomes, and risk factors for mortality.

RESULTS: Blunt thoracoabdominal injury occurred in 1661 patients. Overall, 474 (28.5%) required laparotomy, 31 (1.9%) required thoracotomy (excluding resuscitative thoracotomy), and 1146 (69.0%) required no thoracic or abdominal operation. Overall incidence of intraabdominal solid organ injury was 59.7% and hollow viscus injury, 6.0%. Blunt cardiac trauma occurred in 6.3%; major thoracic vessel injury, in 4.6%; and diaphragmatic trauma, in 6.0%. The majority of solid organ injuries were managed nonoperatively (liver, 83.9%; spleen, 68.3%; and kidney, 91.2%). Excluding patients with severe head trauma, mortality ranged from 4.5% with nonoperative management to 18.1% and 66.7% in those requiring laparotomy and dual cavitary exploration, respectively. Age 55 years or older, Injury Severity Score of 25 or more, Glasgow Coma Scale score of 8 or less, initial hypotension, massive transfusion, and liver, cardiac, or abdominal vascular trauma were all independent risk factors for mortality.

CONCLUSIONS: Most patients with blunt thoracoabdominal trauma are managed nonoperatively. The need for non-resuscitative thoracotomy or combined thoracoabdominal operation is rare. The abdomen contains the overwhelming majority of injuries requiring operative intervention and should be the initial cavity of exploration in the patient requiring emergent surgery without directive radiologic data.

[/EXPAND]

What is 'hypotension' in penetrating trauma?

I previously noted an article demonstrating that a ‘lowish’ – as opposed to a low – systolic blood pressure is a reason to be vigilant in blunt trauma patients, as a significant increase in mortality has been demonstrated with a systolic blood pressure (SBP) < 110 mmHg.
The same researchers have found similar results in patients with penetrating trauma.
Compared with the reference group with SBP 110-129mmHg, mortality was doubled at SBP 90-109mmHg, was four-fold higher at 70-89mmHg and 10-fold higher at <70mmHg. SBP values ≥150mmHg were associated with decreased mortality.
Systolic blood pressure below 110 mmHg is associated with increased mortality in penetrating major trauma patients: Multicentre cohort study
Resuscitation. 2012 Apr;83(4):476-81
[EXPAND Click for abstract]


INTRODUCTION: Non-invasive systolic blood pressure (SBP) measurement is a commonly used triaging tool for trauma patients. A SBP of <90mmHg has represented the threshold for hypotension for many years, but recent studies have suggested redefining hypotension at lower levels. We therefore examined the association between SBP and mortality in penetrating trauma patients.

METHODS: We conducted a prospective cohort study in adult (≥16 years) penetrating trauma patients. Patients were admitted to hospitals belonging to the Trauma Audit and Research Network (TARN) between 2000 and 2009. The main outcome measure was the association between SBP and mortality at 30 days. Multivariate logistic regression models adjusted for the influence of age, gender, Injury Severity Score (ISS) and Glasgow Coma Score (GCS) on mortality were used. RESULTS: 3444 patients with a median age of 30 years (IQR 22.5-41.4), SBP of 126mmHg (IQR 107-142), ISS of 9 (IQR 9-14) and GCS of 15 (IQR 15-15), were analysed. Multivariable logistic regression analysis adjusted for age, gender, severity of injury and level of consciousness showed a cut-off for SBP at <110mmHg, after which increased mortality was observed. Compared with the reference group with SBP 110-129mmHg, mortality was doubled at SBP 90-109mmHg, was four-fold higher at 70-89mmHg and 10-fold higher at <70mmHg. SBP values ≥150mmHg were associated with decreased mortality.

CONCLUSION: We recommend that penetrating trauma patients with a SBP<110mmHg are triaged to resuscitation areas within dedicated, appropriately specialised, high-level care trauma centres.

[/EXPAND]

Is it time to abandon plain radiography in the trauma room?

For patients who will be having a chest CT, perhaps sonography could replace chest radiography in the resus room as the initial imaging step; this recent prospective study shows its superiority over the ‘traditional’ ATLS approach.

In haemodynamically stable patients with prophylactic pelvic splints in place, one could easily argue against plain pelvis films too (the caveat being rapid access to CT is necessary). The arguments against resus-room lateral cervical spine x-rays were made ages ago and these are now rarely done in the UK & Australia.

Is it time to abandon plain radiography altogether for stable major trauma patients?


Background: The accuracy of combined clinical examination (CE) and chest radiography (CXR) (CE + CXR) vs thoracic ultrasonography in the acute assessment of pneumothorax, hemothorax, and lung contusion in chest trauma patients is unknown.

Methods: We conducted a prospective, observational cohort study involving 119 adult patients admitted to the ED with thoracic trauma. Each patient, secured onto a vacuum mattress, underwent a subsequent thoracic CT scan after first receiving CE, CXR, and thoracic ultrasonography. The diagnostic performance of each method was also evaluated in a subgroup of 35 patients with hemodynamic and/or respiratory instability.

Results: Of the 237 lung fields included in the study, we observed 53 pneumothoraces, 35 hemothoraces, and 147 lung contusions, according to either thoracic CT scan or thoracic decompression if placed before the CT scan. The diagnostic performance of ultrasonography was higher than that of CE + CXR, as shown by their respective areas under the receiver operating characteristic curves (AUC-ROC): mean 0.75 (95% CI, 0.67-0.83) vs 0.62 (0.54-0.70) in pneumothorax cases and 0.73 (0.67-0.80) vs 0.66 (0.61-0.72) for lung contusions, respectively (all P < .05). In addition, the diagnostic performance of ultrasonography to detect pneumothorax was enhanced in the most severely injured patients: 0.86 (0.73-0.98) vs 0.70 (0.61-0.80) with CE + CXR. No difference between modalities was found for hemothorax.
Conclusions: Thoracic ultrasonography as a bedside diagnostic modality is a better diagnostic test than CE and CXR in comparison with CT scanning when evaluating supine chest trauma patients in the emergency setting, particularly for diagnosing pneumothoraces and lung contusions.

Diagnostic accuracy of ultrasonography in the acute assessment of common thoracic lesions after trauma
Chest. 2012 May;141(5):1177-83

The Bleeding Trauma Patient

The Bleeding Trauma Patient
by Dr Pete Sherren
By popular request, Here are the slides from a presentation given by HEMS critical care physician Dr Pete Sherren.

These notes accompany the slides:
Hypothermia, acidaemia and coagulopathy or the ‘lethal triad’, is a well described entity in the trauma population and is associated with significant mortality [1]. Traditionally the aetiology of a trauma induced coagulopathy was thought to be multifactorial and involve hypothermia, acidaemia, dilutional coagulopathy, pre-existing bleeding diathesis and disseminated intravascular coagulation (Figure 1).

Figure 1. A diagram showing some of the mechanisms leading to coagulopathy in the injured.

In 2003 Brohi et al showed that around 25% of severely injured trauma patients present to hospital with a significant coagulopathy which was unrelated to fluid administration [2]. This early coagulopathy has become known as the Acute Traumatic coagulopathy (ATC) or Acute Coagulopathy of Trauma Shock (ACoTS). It is associated with an increase in transfusion requirements, injury severity scores, organ dysfunction and mortality rates [2-5].
ATC is an impairment of haemostasis involving a dynamic interaction between endogenous anticoagulants and fibrinolysis that is initiated immediately after an injury [5]. ATC is driven by an endothelial injury and hypoperfusion, which results in in increased thrombomodulin expression and activation of protein C (Figure 3). The inhibitory effect of activated protein C on clotting factors V/VIII and plasminogen activator inhibitor-1 (PAI-1), would appear key in the development of ATC [5,6].

Figure 2. Expression of thrombomodulin following a traumatic injury results in increased activation of protein C with resulting impairment of clotting factors V/VIII and reduction in thrombin generation. Activated Protein C also has an inhibitory effect on PAI-1 which results in unregulated tPA activity and fibrinolysis.

Damage control resuscitation (DCR) describes a package of care for the haemorrhaging trauma patient. It involves early damage control surgery, haemostatic resuscitation and permissive hypotension. DCR aims to control haemorrhage early while aggressively targeting the ATC and lethal triad. DCR has emerged as the accepted standard of care and some observational studies have suggested a survival benefit [6].

  • Damage Control Surgery – The priority for any haemorrhaging trauma patient is good haemostasis. Unstable patients with major trauma do not tolerate prolonged definitive surgery and hence the emergence of damage control surgery. The aim of damage control surgery is to normalise physiology at the expense of anatomy.
  • Haemostatic resuscitation – Describes the aggressive early use of packed red blood cells, clotting products and coagulation adjuncts in an attempt to mitigate the effects of the ATC and lethal triad in major trauma patients. The exact PRBC:FFP ratio remains unclear, but should ideally be less than 2:1 [7]. In massive transfusions along with appropriate FFP, platelet and fibrinogen supplementation, consideration should be given to early adjunctive therapies such as tranexamic acid [8] while maintaining ionised calcium levels greater than 1.0 mmol/L [9].
  • Permissive hypotension – Involves titrated volume resuscitation, which targets a subnormal end point that maintains organ viability until haemorrhage is controlled. By avoiding overzealous fluid resuscitation which targets normotension, the hope is to preserve the first and often best clot. Although permissive hypotension is frequently employed in traumatic haemorrhage, there is really only robust evidence that it is advantageous in penetrating trauma [10]. In blunt trauma there is a relative paucity of good evidence to guide practice, while strong evidence exists for maintaining cerebral perfusion pressures when there are associated head injuries. The end points for resuscitation will depend on age, premorbid autoregulatory state and acute pathology.

DCR is an ever evolving concept and potential emerging management strategies include –

  • Thromboelastometry (TEG/ROTEM) to guide haemostatic resuscitation instead of ratio based transfusions.
  • Prothrombin complex concentrate (FII, VII, IX and X) in non-warfarin patients
  • Fibrinogen complex concentrate (fibrinogen and FXIII) over cryoprecipitate.
  • Alkalising agents such as Tris-hydroxymethyl aminomethane (THAM) in massive transfusion with severe acidaemia
  • Novel hybrid resuscitation strategies.
  • High flow/low pressure resuscitation – endothelial resuscitation and microvascular washout.
  • Suspended Animation
  • Platelet function analysis in trauma with platelet mapping and aggregometry vs traditional PF-100

Learning points

  • Early coagulation dysfunction is common in trauma patients with haemorrhagic shock.
  • Tailored management of the ‘lethal triad’ and ATC is essential.
  • DCR is an emerging standard of care; however, some of its components are pushing the boundaries of what is good evidence based medicine.

References
1. Moore EE. Staged laparotomy for the hypothermia, acidosis, and coagulopathy. Am J Surg 1996;172:405-410.
2. Brohi K, Singh J, Heron M, Coats T. Acute Traumatic coagulopathy. J Trauma. 2003;54:1127-1130.
3. Davenport R, Manson J, De’Arth H, Platton S, Coates A, Allard S, Hart D, Pearse RM, Pasi J, MacCullum P, Stanworth S, Brohi K. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652-2658.
4. Maegele M, Lefering R, Yucei N, Tjardes T, Rixen D,Paffrath T, Simanski C, Neugebauer E, Bouillon B; AG Polytrauma of the German Trauma Society (DGU). Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007 Mar;38(3):298-304.
5. Firth D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012 Apr;25(2):229-34.
6. Cotton BA, Reddy N, Hatch QM, LeFebvre E, Wade CE, Kozar RA, Gill BS, Albarado R, McNutt MK, Holcomb JB. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011 Oct;254(4):598-605.
7. Davenport R, Curry N, Manson J, De’Ath H, Coates A, Rourke C, Pearse R, Stanworth S, Brohi K. Hemostatic effects of fresh frozen plasma may be maximal at red cell ratios of 1:2. J Trauma. 2011 Jan;70(1):90-5; discussion 95-6.
8. CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt BJ, Morales C, Perel P, Prieto-Merino D, Woolley T. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011 Mar 26;377(9771):1096-101, 1101.e1-2.
9. Dawes R, Thomas GO. Battlefield resuscitation. Curr Opin Crit Care. 2009 Dec;15(6):527-35
10. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, Mattox KL. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994 Oct 27;331(17):1105-9.
11. Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012 Feb 24;20:15.

Head injury was not predictive for cervical spine injury

Two papers examining the same massive European trauma dataset identify risk factors for spinal injury. The first examined all spinal injury(1), and the most recent focuses on cervical injury(2). Male gender, decreased GCS, falls > 2m, sports injuries, and road traffic collisions were predictors of any fracture/dislocation or cord injury. Head injury was not an independent risk factor, contrary to much popular teaching. I’ve summarised the two papers’ findings in this table. The odds ratios are reported in the abstracts.

Download Keynote presentation slide (for Mac)

1. Epidemiology and predictors of spinal injury in adult major trauma patients: European cohort study
Eur Spine J. 2011 Dec;20(12):2174-80. Free full text
[EXPAND Click to read abstract]


This is a European cohort study on predictors of spinal injury in adult (≥16 years) major trauma patients, using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Predictors for spinal fractures/dislocations or spinal cord injury were determined using univariate and multivariate logistic regression analysis. 250,584 patients were analysed. 24,000 patients (9.6%) sustained spinal fractures/dislocations alone and 4,489 (1.8%) sustained spinal cord injury with or without fractures/dislocations. Spinal injury patients had a median age of 44.5 years (IQR = 28.8–64.0) and Injury Severity Score of 9 (IQR = 4–17). 64.9% were male. 45% of patients suffered associated injuries to other body regions. Age <45 years (≥45 years OR 0.83–0.94), Glasgow Coma Score (GCS) 3–8 (OR 1.10, 95% CI 1.02–1.19), falls >2 m (OR 4.17, 95% CI 3.98–4.37), sports injuries (OR 2.79, 95% CI 2.41–3.23) and road traffic collisions (RTCs) (OR 1.91, 95% CI 1.83–2.00) were predictors for spinal fractures/dislocations. Age <45 years (≥45 years OR 0.78–0.90), male gender (female OR 0.78, 95% CI 0.72–0.85), GCS <15 (OR 1.36–1.93), associated chest injury (OR 1.10, 95% CI 1.01–1.20), sports injuries (OR 3.98, 95% CI 3.04–5.21), falls >2 m (OR 3.60, 95% CI 3.21–4.04), RTCs (OR 2.20, 95% CI 1.96–2.46) and shooting (OR 1.91, 95% CI 1.21–3.00) were predictors for spinal cord injury. Multilevel injury was found in 10.4% of fractures/dislocations and in 1.3% of cord injury patients. As spinal trauma occurred in >10% of major trauma patients, aggressive evaluation of the spine is warranted, especially, in males, patients <45 years, with a GCS <15, concomitant chest injury and/or dangerous injury mechanisms (falls >2 m, sports injuries, RTCs and shooting). Diagnostic imaging of the whole spine and a diligent search for associated injuries are substantial.

[/EXPAND]
2. Epidemiology and predictors of cervical spine injury in adult major trauma patients: a multicenter cohort study
J Trauma Acute Care Surg. 2012 Apr;72(4):975-81
[EXPAND Click to read abstract]


Patients with cervical spine injuries are a high-risk group, with the highest reported early mortality rate in spinal trauma.

METHODS: This cohort study investigated predictors for cervical spine injury in adult (≥ 16 years) major trauma patients using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Univariate and multivariate logistic regression analyses were used to determine predictors for cervical fractures/dislocations or cord injury.

RESULTS: A total of 250,584 patients were analyzed. Median age was 47.2 years (interquartile range, 29.8-66.0) and Injury Severity Score 9 (interquartile range, 4-11); 60.2% were male. Six thousand eight hundred two patients (2.3%) sustained cervical fractures/dislocations alone. Two thousand sixty-nine (0.8%) sustained cervical cord injury with/without fractures/dislocations; 39.9% of fracture/dislocation and 25.8% of cord injury patients suffered injuries to other body regions. Age ≥ 65 years (odds ratio [OR], 1.45-1.92), males (females OR, 0.91; 95% CI, 0.86-0.96), Glasgow Coma Scale (GCS) score <15 (OR, 1.26-1.30), LeFort facial fractures (OR, 1.29; 95% confidence interval [CI], 1.05-1.59), sports injuries (OR, 3.51; 95% CI, 2.87-4.31), road traffic collisions (OR, 3.24; 95% CI, 3.01-3.49), and falls >2 m (OR, 2.74; 95% CI, 2.53-2.97) were predictive for fractures/dislocations. Age <35 years (OR, 1.25-1.72), males (females OR, 0.59; 95% CI, 0.53-0.65), GCS score <15 (OR, 1.35-1.85), systolic blood pressure <110 mm Hg (OR, 1.16; 95% CI, 1.02-1.31), sports injuries (OR, 4.42; 95% CI, 3.28-5.95), road traffic collisions (OR, 2.58; 95% CI, 2.26-2.94), and falls >2 m (OR, 2.24; 95% CI, 1.94-2.58) were predictors for cord injury.

CONCLUSIONS: 3.5% of patients suffered cervical spine injury. Patients with a lowered GCS or systolic blood pressure, severe facial fractures, dangerous injury mechanism, male gender, and/or age ≥ 35 years are at increased risk. Contrary to common belief, head injury was not predictive for cervical spine involvement.

[/EXPAND]