I published a case report in the EMJ highlighting the use of intranasal ketamine in a pre-hospital paediatric burns case.
The lad had nasty scalds but did not need iv fluids and had no other indications for an iv line. The vigorous first aid had rendered him cold and veinless and an intraosseous would have been overkill. Ketamine was perfect for the job and Ambulance Service New South Wales paramedics carry a mucosal atomisation device (MAD) for the administration of i.n. fentanyl. I used the MAD to adminster 0.5 mg/kg ketamine, but there is a dead space in the device (0.1 ml) that probably resulted in actual delivery of 0.25mg/kg. This gave great analgesia and compliance enabling us to painlessly apply polyethylene film to the burns.
I received the following email from TIm Wolfe, the inventor of the MAD nasal (reproduced with permission):
Cliff,
Nice contribution to the literature. There is a lot of interest in IN ketamine in these lower doses to treat pain but not cause sedation. You eluded to the military interest and the hospice interest. I think your insights for EMS are also cutting edge – hopefully this will lead others to design a larger trial.
Thanks
Tim Wolfe, MD
In contrast to numerous other European nations, physicians with critical care skills do not consistently form part of the emergency pre-hospital system in the UK. My colleagues and I described the level of cover provided to patients in England, Wales and Northern Ireland, now available as an open access article online.
The BMJ’s press release is headed: ‘Critical care outside hospital ‘incomplete, unpredictable, and inconsistent’ across UK‘, a statement that has captured the interest of some media outlets, including the first place you would look for health news: bigsoccer.com. Pre-hospital physician-based critical care provision. (A) Daylight hours. (B) Hours of darkness.
Background Every day throughout the UK, ambulance services seek medical assistance in providing critically ill or injured patients with pre-hospital care. Objective To identify the current availability and utilisation of physician-based pre-hospital critical care capability across England, Wales and Northern Ireland. Design A postal and telephone survey was undertaken between April and December 2009 of all 13 regional NHS ambulance services, 17 air ambulance charities, 34 organisations affiliated to the British Association for Immediate Care and 215 type 1 emergency departments in England, Wales and Northern Ireland. The survey focused on the availability and use of physician-based pre-hospital critical care support. Results The response rate was 100%. Although nine NHS ambulance services recorded physician attendance at 6155 incidents, few could quantify doctor availability and utilisation. All but one of the British Association for Immediate Care organisations deployed ‘only when available’ and only 45% of active doctors could provide critical care support. Eleven air ambulance services (65%) operated with a doctor but only 5 (29%) operated 7 days a week. Fifty-nine EDs (27%) had a pre-hospital team but only 5 (2%) had 24 h deployable critical care capability and none were used regularly. Conclusion There is wide geographical and diurnal variability in availability and utilisation of physician-based pre-hospital critical care support. Only London ambulance service has access to NHS-commissioned 24 h physician-based pre-hospital critical care support. Throughout the rest of the UK, extensive use is made of volunteer doctors and charity sector providers of varying availability and capability.
Loss of consciousness can occur when a patient is suspended in a harness – ‘suspension syncope’, probably due to factors that include venous pooling in the lower limbs. An evidence based review of this entity was carried out:
The possibility of a fall into rope protection and subsequent suspension exists in some industrial situations. The action to take for the first aid management of rescued victims has not been clear, with some authors advising against standard first aid practices. To clarify the medical evidence relating to harness suspension the UK Health and Safety Executive commissioned an evidence-based review and guideline. Four key questions were posed relating to the incidence, circumstances, recognition and first aid management of the medical effects of harness suspension. A comprehensive literature search returned 60 potential papers with 29 papers being reviewed. The Scottish Intercollegiate Guideline Network (SIGN) methodology was used to critically review the selected papers and develop a guideline. A stakeholders’ workshop was held to review the evidence and draft recommendations. Nine papers formed the basis of the guideline recommendations. No data on the incidence of harness suspension syncope were found. Presyncopal symptoms or syncope are thought to occur with motionless suspension as a consequence of orthostasis leading to hypotension. There was no evidence of any other pathology, despite this being hypothesised by others. No evidence was found that showed the efficacy or safety of positioning a victim in a semirecumbent position. In any case of harness suspension, the standard UK first aid guidance for recovery of a semiconscious or unconscious person in a horizontal position should be followed. Other recommendations included areas for further research and proposals for standard data collection on falls into rope protection.
A Swiss study examined the on site triage decision making of pre-hospital emergency physicians. Dispatch of the physicians was coordinated by trained nurses or paramedics.
OBJECTIVE: Accurate identification of major trauma patients in the prehospital setting positively affects survival and resource utilization. Triage algorithms using predictive criteria of injury severity have been identified in paramedic-based prehospital systems. Our rescue system is based on prehospital paramedics and emergency physicians. The aim of this study was to evaluate the accuracy of the prehospital triage performed by physicians and to identify the predictive factors leading to errors of triage. METHODS: Retrospective study of trauma patients triaged by physicians. Prehospital triage was analyzed using criteria defining major trauma victims (MTVs, Injury Severity Score >15, admission to ICU, need for immediate surgery and death within 48 h). Adequate triage was defined as MTVs oriented to the trauma centre or non-MTV (NMTV) oriented to regional hospitals. RESULTS: One thousand six hundred and eighti-five patients (blunt trauma 96%) were included (558 MTV and 1127 NMTV). Triage was adequate in 1455 patients (86.4%). Overtriage occurred in 171 cases (10.1%) and undertriage in 59 cases (3.5%). Sensitivity and specificity was 90 and 85%, respectively, whereas positive predictive value and negative predictive value were 75 and 94%, respectively. Using logistic regression analysis, significant (P<0.05) predictors of undertriage were head or thorax injuries (odds ratio >2.5). Predictors of overtriage were paediatric age group, pedestrian or 2 wheel-vehicle road traffic accidents (odds ratio >2.0). CONCLUSION: Physicians using clinical judgement provide effective prehospital triage of trauma patients. Only a few factors predicting errors in triage process were identified in this study.
Accuracy of prehospital triage of trauma patients by emergency physicians: a retrospective study in western Switzerland Eur J Emerg Med. 2011 Apr;18(2):86-93
Eighteen trauma centers contributed ED resuscitative thoracotomy data to a study that commenced enrollment in January 2003. During the ensuing 6 years, 56 patients survived to hospital discharge. Mean age was 31.3; the youngest was a 15-year-old female and the oldest was a 64-year-old male; 93% were male. Injury mechanism was stab wound (SW) in 30 patients, gunshot wound (GSW) in 21 patients, and blunt trauma in 5 patients.
The most common injury was a SW to a ventricle (n =17), accounting for 30% of survivors, followed by a GSW to the lung (n =9) in 16%. There were five survivors (9%) after blunt trauma. Two patients were revived with isolated head trauma who had deteriorated from extensive hemorrhage, one from an open blunt skull fracture (who had 5 minutes of prehospital CPR and left the hospital neurologically intact.) and the other from SWs to the scalp. Two patients also survived with isolated neck injuries: a SW to the vertebral artery and a GSW to the internal carotid artery.
34% of survivors underwent prehospital CPR. Corroborating the reported duration of CPR, the mean base deficit (BD) was 23.3 mequiv/L (range, 14–32 mequiv/L) in those undergoing CPR >5 minutes. In the SW group, the duration was 2 minutes to 10 minutes; the sole survivor after 10 minutes had ventricular wounds with pericardial tamponade. In the GSW group, prehospital CPR was from 1 minute to 15 minutes. The only patient surviving with 15 minutes of CPR also had a ventricular wound with pericardial tamponade but had a moderate neurologic deficit at discharge. In the blunt group, CPR ranged from 3 minutes to 9 minutes; the survivor with 9 minutes of CPR had an atrial rupture with pericardial tamponade.
Seven patients survived with asystole at ED arrival; of significance, all patients had pericardial tamponade. At the time of hospital discharge, three of these patients (43%) had functional neurologic recovery.
The authors state: ‘most recent edition of the ACSCOT advanced trauma life support manual continues to declare “patients sustaining blunt injuries who arrive pulseless but with myocardial electrical activity are not candidates for resuscitative thoracotomy”. But these statements are not congruent with most of the recent literature.‘ Recommended Limits of Resuscitative Thoracotomy in the ED
BACKGROUND: Since the promulgation of emergency department (ED) thoracotomy >40 years ago, there has been an ongoing search to define when this heroic resuscitative effort is futile. In this era of health care reform, generation of accurate data is imperative for developing patient care guidelines. The purpose of this prospective multicenter study was to identify injury patterns and physiologic profiles at ED arrival that are compatible with survival. METHODS: Eighteen institutions representing the Western Trauma Association commenced enrollment in January 2003; data were collected prospectively. RESULTS: During the ensuing 6 years, 56 patients survived to hospital discharge. Mean age was 31.3 years (15-64 years), and 93% were male. As expected, survival was predominant in those with thoracic injuries (77%), followed by abdomen (9%), extremity (7%), neck (4%), and head (4%). The most common injury was a ventricular stab wound (30%), followed by a gunshot wound to the lung (16%); 9% of survivors sustained blunt trauma, 34% underwent prehospital cardiopulmonary resuscitation (CPR), and the presenting base deficit was >25 mequiv/L in 18%. Relevant to futile care, there were survivors of blunt torso injuries with CPR up to 9 minutes and penetrating torso wounds up to 15 minutes. Asystole was documented at ED arrival in seven patients (12%); all these patients had pericardial tamponade and three (43%) had good functional neurologic recovery at hospital discharge. CONCLUSION: Resuscitative thoracotomy in the ED can be considered futile care when (a) prehospital CPR exceeds 10 minutes after blunt trauma without a response, (b) prehospital CPR exceeds 15 minutes after penetrating trauma without a response, and (c) asystole is the presenting rhythm and there is no pericardial tamponade. Defining the Limits of Resuscitative Emergency Department Thoracotomy: A Contemporary Western Trauma Association Perspective J Trauma. 2011 Feb;70(2):334-339.
Data from the Crash Injury Research Engineering Network (CIREN) database were analysed to identify epidemiologic and biomechanical risk factors for cervical spinal cord and spinal column injuries. They showed:
Older case occupants are at an increased risk of cervical spine injury (CSI)
Rollover crashes and severe crashes led to a much higher risk of CSI than other types and severity of MVCs
Seat belt use is very effective in preventing CSI
Airbag deployment may increase the risk of occupants sustaining a CSI
BACKGROUND: : Motor vehicle collisions (MVCs) are the leading cause of spine and spinal cord injuries in the United States. Traumatic cervical spine injuries (CSIs) result in significant morbidity and mortality. This study was designed to evaluate both the epidemiologic and biomechanical risk factors associated with CSI in MVCs by using a population-based database and to describe occupant and crashes characteristics for a subset of severe crashes in which a CSI was sustained as represented by the Crash Injury Research Engineering Network (CIREN) database. METHODS: : Prospectively collected CIREN data from the eight centers were used to identify all case occupants between 1996 and November 2009. Case occupants older than 14 years and case vehicles of the four most common vehicle types were included. The National Automotive Sampling System’s Crashworthiness Data System, a probability sample of all police-reported MVCs in the United States, was queried using the same inclusion criteria between 1997 and 2008. Cervical spinal cord and spinal column injuries were identified using Abbreviated Injury Scale (AIS) score codes. Data were abstracted on all case occupants, biomechanical crash characteristics, and injuries sustained. Univariate analysis was performed using a χ analysis. Logistic regression was used to identify significant risk factors in a multivariate analysis to control for confounding associations. RESULTS: : CSIs were identified in 11.5% of CIREN case occupants. Case occupants aged 65 years or older and those occupants involved in rollover crashes were more likely to sustain a CSI. In univariate analysis of the subset of severe crashes represented by CIREN, the use of airbag and seat belt together (reference) were more protective than seat belt alone (odds ratio [OR] = 1.73, 95% confidence interval [CI] = 1.32-2.27) or the use of neither restraint system (OR = 1.45, 95% CI = 1.02-2.07). The most frequent injury sources in CIREN crashes were roof and its components (24.8%) and noncontact sources (15.5%). In multivariate analysis, age, rollover impact, and airbag-only restraint systems were associated with an increased odds of CSI. Using the population-based National Automotive Sampling System’s Crashworthiness Data System data, 0.35% of occupants sustained a CSI. In univariate analysis, older age was noted to be a significant risk factor for CSI. Airbag-only restraint systems and both rollover and lateral crashes were also identified as risk factors for CSI. In addition, increasing delta v was highly associated with CSIs. In multivariate analysis, similar risk factors were noted. Of all the restraint systems, seat belt use without airbag deployment was found to be the most protective restraint system (OR = 0.29, 95% CI = 0.16-0.50), whereas airbag-only restraint was associated with the highest risk of CSI (OR = 3.54, 95% CI = 2.29-5.46). CONCLUSIONS: : Despite advances in automotive safety, CSIs sustained in MVC continue to occur too often. Older case occupants are at an increased risk of CSI. Rollover crashes and severe crashes led to a much higher risk of CSI than other types and severity of MVCs. Seat belt use is very effective in preventing CSI, whereas airbag deployment may increase the risk of occupants sustaining a CSI. More protection for older occupants is needed and protection in both rollover and lateral crashes should remain a focus of the automotive industry. The design of airbag restraint systems should be evaluated so that they are not causative of serious injury. In addition, engineers should continue to focus on improving automotive design to minimize the risk of spinal injury to occupants in high severity crashes Occupant and Crash Characteristics for Case Occupants With Cervical Spine Injuries Sustained in Motor Vehicle Collisions J Trauma. 2011 Feb;70(2):299-309
Something I keep up my sleeve (not literally) for managing some life-threatening vascular wounds prior to surgery is the use of a balloon catheter like a foley to tamponade haemorrhage. This paper looks at series of such attempts although they state: “Except for the base of the skull (naso/oropharynx), all catheters were de- ployed in the operating room.“, so not exactly emergency medicine / pre-hospital practice, but a useful reminder that this is an option when going immediately to the operating room isn’t: BACKGROUND: : Balloon catheter tamponade is a valuable technique for arresting exsanguinating hemorrhage. Indications include (1) inaccessible major vascular injuries, (2) large cardiac injuries, and (3) deep solid organ parenchymal bleeding. Published literature is limited to small case series. The primary goal was to review a recent experience with balloon catheter use for emergency tamponade in a civilian trauma population. METHODS: : All patients requiring emergency use of a balloon catheter to tamponade exsanguinating hemorrhage (1998-2009) were included. Patient demographics, injury characteristics, technique, and outcomes were analyzed. RESULTS: : Of the 44 severely injured patients (82% presented with hemodynamic instability; mean base deficit = -20.4) who required balloon catheter tamponade, 23 of the balloons (52%) remained indwelling for more than 6 hours. Overall mortality depended on the site of injury/catheter placement and indwelling time (81% if <6 hours; 52% if ≥6 hours; p < 0.05). Physiologic exhaustion was responsible for 76% of deaths in patients with short-term balloons. Mortality among patients with prolonged balloon catheter placement was 11%, 50%, and 88% for liver, abdominal vascular, and facial/pharyngeal injuries, respectively. Mean indwelling times for iliac, liver, and carotid injuries were 31 hours, 53 hours, and 78 hours, respectively. Overall survival rates were 67% (liver), 67% (extremity vascular), 50% (abdominal vascular), 38% (cardiac), and 8% (face). Techniques included Foley, Fogarty, Blakemore, and/or Penrose drains with concurrent red rubber Robinson catheters. Initial tamponade of bleeding structures was successful in 93% of patients. CONCLUSIONS: : Balloon catheter tamponade can be used in multiple anatomic regions and for variable patterns of injury to arrest ongoing hemorrhage. Placement for central hepatic gunshot wounds is particularly useful. This technique remains a valuable tool in a surgeon’s armamentarium. A Decade’s Experience With Balloon Catheter Tamponade for the Emergency Control of Hemorrhage J Trauma. 2011 Feb;70(2):330-3
Military guys are great at coming up with practical solutions. Need to infuse fluid in the field but have no pressure bag or drip stand? Putting the bag under the patient’s body can squeeze fluid in, but the best place under the patient wasn’t known. A volunteer military study infusing saline through a 14G cannula compared six under-body locations: heels, buttock cleft, sacrum, interscapular region, cervical spine and occiput.
The buttock cleft was best.
I was lucky enough to be interviewed by the amazing Scott Weingart, an emergency medicine intensivist who runs the spectacular EMcrit podcast. We covered some stuff on pre-hospital airway management, physicians in pre-hospital care, and I had a rant about ‘scoop and run’ versus ‘stay and play’. Worryingly, Scott is keeping back some audio footage for a later podcast, probably containing an even bigger rant about things like ATLS.
Click the image to be taken to the EMcrit site where you can listen to the podcast.
In some circles, ‘wuntwuntwun’ is in danger of becoming the new dogma of trauma fluid replacement (ie. 1 unit of plasma and 1 unit of platelets for every unit of red cells). Since it takes longer to thaw some plasma than it does to throw in some O negative packed red cells, some really sick patients may be dead before they get the plasma, biasing comparisons that show a reduced mortality in patients who were still alive to receive plasma. This ‘survivor bias’ has been suggested as a reason that high plasma:red cell ratios are associated with mortality reduction, although this has been challenged.
The survivor bias explanation receives some new support by the following (small) study from Journal of Trauma: BACKGROUND: In light of recent data, controversy surrounds the apparent 30-day survival benefit of patients achieving a fresh frozen plasma (FFP) to packed red blood cell (PRBC) ratio of at least 1:2 in the face of massive transfusions (MT) (≥10 units of PRBC within 24 hours of admission). We hypothesized that initial studies suffer from survival bias because they do not consider early deaths secondary to uncontrolled exsanguinating hemorrhage. To help resolve this controversy, we evaluated the temporal relationship between blood product administration and mortality in civilian trauma patients receiving MT. METHODS: Patients requiring MT over a 22-month period were identified from the resuscitation registry of a Level I trauma center. Shock severity at admission and timing of shock-trauma admission, blood product administration, and death were determined. Patients were divided into high- and low-ratio groups (≥1:2 and<1:2 FFP:PRBC, respectively) and compared. Kaplan-Meier analysis and log-rank test was used to examine 24-hour survival. RESULTS: One hundred three patients (63% blunt) were identified (66 high-ratio and 37 low-ratio). Those patients who achieved a high-ratio in 24 hours had improved survival. However, severity of shock was less in the high-group (base excess: -8.0 vs. -11.2, p=0.028; lactate: 6.3 vs. 8.4, p=0.03). Seventy-five patients received MT within 6 hours. Of these, 29 received a high-ratio in 6 hours. Again, severity of shock was less in the high-ratio group (base excess: -7.6 vs. -12.7, p=0.008; lactate: 6.7 vs. 9.4, p=0.02). For these patients, 6-hour mortality was less in the high-group (10% vs. 48%, p<0.002). After accounting for early deaths, groups were similar from 6 hours to 24 hours. CONCLUSIONS: Improved survival was observed in patients receiving a higher plasma ratio over the first 24 hours. However, temporal analysis of mortality using shorter time periods revealed those who achieve early high-ratio are in less shock and less likely to die early from uncontrolled hemorrhage compared with those who never achieve a high-ratio. Thus, the proposed survival advantage of a high-ratio may be because of selection of those not likely to die in the first place; that is, patients die with a low-ratio not because of a low-ratio.
The authors state “The current study underscores the need for well-designed prospective studies to address the important question of which ratio results in improved survival and stresses the importance of timing of blood product administration as this may impact survival.” Improved survival after hemostatic resuscitation: does the emperor have no clothes? J Trauma. 2011 Jan;70(1):97-102