Tag Archives: outcome

Cuff pressures and tracheal injury

We all intubate patients with cuffed tubes, but we’re far too busy and important to fart around measuring tracheal tube cuff pressures when we’re saving lives right? Surely something the ICU nurses can sort out between ‘eye care’ and swabbing for MRSA.
The modern ‘high volume low pressure’ cuff has certainly led us to worry less about cuff pressures, and in frontline critical care specialties like emergency medicine and pre-hospital and retrieval medicine it’s the last thing on our minds. However we should consider the accumulating pool of evidence that tells us:

  1. Physicians are hopelessly poor at estimating cuff pressures based on palpating the pilot balloon
  2. Cuff pressures are frequently very high
  3. Tracheal mucosal injury can occur even after short term intubation (a few hours)
  4. When the pressure in the cuff exceeds 22 mm Hg, blood flow in the tracheal mucosa begins decreasing
  5. Tracheal mucosal blood flow reduces markedly when the pressure reaches 30 mm Hg
  6. When the pressure in the cuff reaches 50 mm Hg for 15 minutes, ischemic injury to the tracheal mucosa can occur

Patchy hemorrhagic ulceration in tracheal mucosa

A study from China tested the hypothesis that an appropriate tracheal tube cuff (ETTc) pressure even in short procedures would reduce endotracheal intubation–related morbidity. They compared bronchoscopic appearance of tracheal mucosa, and patient symptoms of tracheal injury, in two groups of elective surgical patients anaesthetised and intubated between 120 and 180 minutes: a control group without measuring ETTc pressure, and a study group with ETTc pressure measured and adjusted to a range 15-25 mmHg. The endoscopist was blinded to the study group allocation.

The mean ETTc pressure measured after estimation by palpation of the pilot balloon of the study group was 43 +/- 23.3 mm Hg before adjustment (the highest was 210 mm Hg), and 20+/- 3.1 mm Hg after adjustment (p< 0.001). The incidence of postprocedural sore throat, hoarseness, and blood-streaked expectoration in the control group was significantly higher than in the study group. As the duration of endotracheal intubation increased, the incidence of sore throat and blood-streaked expectoration in the control group increased. The incidence of sore throat in the study group also increased with increasing duration of endotracheal intubation. Fiberoptic bronchoscopy showed that the tracheal mucosa was injured in varying degrees in both groups, but the injury was more severe in the control group than in the study group.
So..time to get a cuff manometer for your ED or helicopter? Perhaps you already have one. What do you think?
Correlations Between Controlled Endotracheal Tube Cuff Pressure and Postprocedural Complications: A Multicenter Study
Anesth Analg. 2010 Nov;111(5):1133-7
Related posts:
Cuff pressure in flight
Paediatric cuff pressures

Better outcome with paediatric retrieval teams

Data from the England and Wales Paediatric Intensive Care Audit Network on children (aged 16 years or younger) admitted to 29 regional paediatric intensive care units (PICUs) between 1 January 2005 and 31 December 2008 were analysed in a retrospective cohort study to assess the effectiveness of the specialist retrieval teams.

The type of transferring team (specialist or non-specialist) was known for 16 875 cases and was specialist in 13 729 (81%). Compared with children transferred to PICUs from within the same hospital, children transferred from other hospitals were younger (median age 10 months vs 18 months), more acutely ill (mortality risk 6% vs 4% using the Paediatric Index of Mortality), needed more resources (such as invasive ventilation, vasoactive drugs, renal replacement therapy, extracorporeal membrane oxygenation and/or multiple-organ support), had longer stays in the PICU (median 75 h vs 43 h) and had a higher crude mortality (8% vs 6%). On multivariable analysis after adjustment for case mix and organisational factors, the risk of death among interhospital transfers was significantly (35%) lower than among intrahospital transfers. With similar analysis, the times spent in PICU did not differ significantly between these two groups. When the type of transferring team was considered, crude mortality was similar with specialist and non-specialist teams, although the children transferred by the specialist teams were more severely ill. On multivariable analysis, the risk of death was 42% lower with specialist team transfer.
These findings appear to confirm the value of specialist retrieval teams. Why children transferred from other hospitals did better than children transferred to the PICU in the same hospital is not explained.
Effect of specialist retrieval teams on outcomes in children admitted to paediatric intensive care units in England and Wales: a retrospective cohort study
Lancet. 2010 Aug 28;376(9742):698-704

Paramedic RSI in Australia

A prospective, randomized, controlled trial compared paramedic rapid sequence intubation with hospital intubation in adults with severe traumatic brain injury in four cities in Victoria, Australia. The primary outcome was neurologic outcome at 6 months postinjury.
Training
Paramedics already experienced in ‘cold’ intubation (without drugs) undertook an additional 16-hour training program in the theory and practice of RSI, including class time (4 hours), practical intubating experience in the operating room under the supervision of an anesthesiologist (8 hours), and completion of a simulation-based examination (4 hours).
Methods
Patients included in the study were those assessed by paramedics on road ambulances as having all the following: evidence of head trauma, Glasgow Coma Score ≤9, age ≥15 years, and ‘intact airway reflexes’, although this is not defined or explained. Patients were excluded if any of the following applied: within 10 minutes of a designated trauma hospital, no intravenous access, allergy to any of the RSI drugs (as stated by relatives or a medical alert bracelet), or transport planned by medical helicopter. Drug therapy for intubation consisted of fentanyl (100μg), midazolam (0.1 mg/kg), and succinylcholine (1.5 mg/kg) administered in rapid succession. Atropine (1.2 mg) was administered for a heart rate <60/min. A minimum 500 mL fluid bolus (lactated Ringers Solution) was administered. A half dose of the sedative drugs was used in patients with hypotension (systolic blood pressure <100 mm Hg) or older age (>60 years).

Cricoid pressure was applied in all patients. After intubation and confirmation of the position of the endotracheal tube using the presence of the characteristic waveform on a capnograph, patients received a single dose of pancuronium (0.1 mg/kg), and an intravenous infusion of morphine and midazolam at 5 to 10 mg/h each. If intubation was not achieved at the first attempt, or the larynx was not visible, one further attempt at placement of the endotracheal tube over a plastic airway bougie was permitted. If this was unsuccessful, ventilation with oxygen using a bag/mask and an oral airway was commenced and continued until spontaneous respirations returned. Insertion of a laryngeal mask airway was indicated if bag/mask ventilation using an oral airway appeared to provide inadequate ventilation. Cricothyroidotomy was indicated if adequate ventilation could not be achieved with the above interventions. In all patients, a cervical collar was fitted, and hypotension (systolic blood pressure <100 mm Hg) was treated with a 20 mL/kg bolus of lactated Ringers Solution that could be repeated as indicated. Other injuries such as fractures were treated as required. In the hospital emergency department, patients who were not intubated underwent immediate RSI by a physician prior to chest x-ray and computed tomography head scan.
Follow up
At 6 months following injury, surviving patients or their next-of-kin were interviewed by telephone using a structured questionnaire and allocated a score from 1 (deceased) to 8 (normal) using the extended Glasgow Outcome Scale (GOSe). The interviewer was blinded to the treatment allocation.
Statistical power
A sample size of 312 patients was calculated to achieve 80% power at an alpha error of 0.05. Three hundred twenty-eight patients met the enrollment criteria. Three hundred twelve patients were randomly allocated to either paramedic intubation (160 patients) or hospital intubation (152 patients). A mean Injury Severity Score of 25 indicated that many patients had multiple injuries.
Success of intubation
Of the 157 patients administered RSI drugs, intubation was successful in 152 (97%) patients. The remaining 5 patients had esophageal placement of the endotracheal tube recognized immediately on capnography. The endotracheal tube was removed and the patients were managed with an oropharyngeal airway and bag/mask ventilation with oxygen and transported to hospital. There were no cases of unrecognised esophageal intubation on arrival at the emergency department during this study and no patient underwent cricothyroidotomy.
Outcome
After admission to hospital, both groups appeared to receive similar rates of neurosurgical interventions, including initial CT scan, urgent craniotomy (if indicated), and monitoring of intracranial pressure in the intensive care unit.
Favorable neurologic outcome was increased in the paramedic intubation patients (51%) compared with the hospital intubation patients (39%), just reaching statistical significance with P = 0.046. A limitation is that 13 of 312 patients were lost to follow-up and the majority of these were in the hospital intubation group. The authors do point out that the difference in outcomes would no longer be statistically significant whether one more patient had a positive outcome in the treatment group (P = 0.059) or one less in the control group (P = 0.061). The median GOSe was higher in the paramedic intubation group compared with hospital intubation (5 vs. 3), however, this did not reach statistical significance (P = 0.28).
More patients in the paramedic intubation group suffered prehospital cardiac arrest. There were 10 cardiac arrests prior to hospital arrival in the paramedic RSI group and 2 in the patients allocated to hospital intubation. Further detail on these patients is provided in the paper. The authors state that it is likely that the administration of sedative drugs followed by positive pressure ventilation had adverse hemodynamic consequences in patients with uncontrolled bleeding, and that it is possible that the doses of sedative drugs administered in this study to hemodynamically unstable patients were excessive and consideration should be given to a decreasing the dose of sedation.
Authors’ conclusions
The authors overall conclusion is that patients with severe TBI should undergo prehospital intubation using a rapid sequence approach to increase the proportion of patients with favorable neurologic outcome at 6 months postinjury. Further studies to determine the optimal protocol for paramedic rapid sequence intubation that minimize the risk of cardiac arrest should be undertaken.
Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial.
Ann Surg. 2010 Dec;252(6):959-65.
Victorian Ambulance Service protocols are available here, which include their current paramedic RSI protocol

HEMS transport may be predictor of survival

Helicopters are controversial in EMS circles, particularly in the United States, which seems to have a high number of Helicopter Emergency Medical Services (HEMS) crashes. Although this may in part be a reflection of a large increase in HEMS missions, and the factors contributing to crash fatalities have been studied, it makes sense to limit HEMS missions to those that are likely to make a difference to the patient. Advantages of HEMS services may include the ability to deliver a patient more rapidly to the most appropriate facility, as well as being able to convey a highly skilled team more rapidly to the scene.
Analysis of patients from the National Trauma Databank identified 258,387 subjects transported by either helicopter (HT) (16%) or ground ambulance (GT) (84%). HT subjects were younger (36 years ± 19 years vs. 42 years ± 22 years; p < 0.01), more likely to be male (70% vs. 65%; < 0.01), and more likely to have a blunt mechanism (93% vs. 88%; < 0.01) when compared with GT subjects.

For every dead-on-arrival (DOA) subject in the HT group, there were 498 survivors compared with 395 survivors for every DOA subject in the GT group. When comparing indicators of injury severity, patients transported by helicopter were more severely injured (mean ISS and percentage with ISS > 15), were more likely to have a severe head injury, and were more likely to have documented hypotension or abnormal respiratory when compared with those transported by ground ambulance. Furthermore, HT subjects also had longer length of stay, higher rates for ICU admission, and mechanical ventilation, as well as an increased requirement for emergent surgical intervention.
interestingly, this study shows that <15% of HT patients nationally are discharged within 24 hours. This is much lower than the 24.1% reported previously, suggesting that the degree of over-triage may not be as significant on the national level as reported in smaller studies.
Overall survival was lower in HT subjects versus GT subjects on univariate analysis (92.5% vs. 95.6%; < 0.01). Stepwise univariate analysis identified all covariates for inclusion in the regression model. HT became an independent predictor of survival when compared with GT after adjustment for covariates (OR, 1.22; 95% CI, 1.18– 1.27; < 0.01).
Helicopters and the Civilian Trauma System: National Utilization Patterns Demonstrate Improved Outcomes After Traumatic Injury
J Trauma. 2010 Nov;69(5):1030-4
National Transportation Safety Board HEMS data

Negative laparotomy

The complication rate after a negative or nontherapeutic laparotomy is reported to be substantial but most of this reported morbidity is because of associated injuries and is not related to the abdominal exploration. On the other hand, the morbidity and mortality associated with a delay in taking the injured patient to the operating room is well recognised. A retrospective study attempts to show that when injury severity (using TRISS) is controlled for, negative laparotomy did not significantly increase the complication burden compared with no laparotomy in blunt abdominal trauma patients.

“Never Be Wrong”: The Morbidity of Negative and Delayed Laparotomies After Blunt Trauma
J Trauma. 2010 Dec;69(6):1386-92

Flat IVC on CT associated with deterioration

BACKGROUND: : We aimed to investigate the value of the diameter of the inferior vena cava (IVC) on initial computed tomography (CT) to predict hemodynamic deterioration in patients with blunt torso trauma.
METHODS: : We reviewed the initial CT scans, taken after admission to emergency room (ER), of 114 patients with blunt torso trauma who were consecutively admitted during a 24-month period. We measured the maximal anteroposterior and transverse diameters of the IVC at the level of the renal vein. Flat vena cava (FVC) was defined as a maximal transverse to anteroposterior ratio of less than 4:1. According to the hemodynamic status, the patients were categorized into three groups. Patients with hemodynamic deterioration after the CT scans were defined as group D (n = 37). The other patients who remained hemodynamically stable after the CT scans were divided into two groups: patients who were hemodynamically stable on ER arrival were defined as group S (n = 60) and those who were in shock on ER arrival and responded to the fluid resuscitation were defined as group R (n = 17).

RESULTS: : The anteroposterior diameter of the IVC in group D was significantly smaller than those in groups R and S (7.6 mm ± 4.4 mm, 15.8 mm ± 5.5 mm, and 15.3 mm ± 4.2 mm, respectively; p < 0.05). Of the 93 patients without FVC, 16 (17%) were in group D, 14 (15%) required blood transfusion, and 8 (9%) required intervention. However, of the 21 patients with FVC, all patients were in group D, 20 (95%) required blood transfusion, and 17 (80%) required intervention. The patients with FVC had higher mortality (52%) than the other patients (2%). CONCLUSION: : In cases of blunt torso trauma, patients with FVC on initial CT may exhibit hemodynamic deterioration, necessitating early blood transfusion and therapeutic intervention. Predictive Value of a Flat Inferior Vena Cava on Initial Computed Tomography for Hemodynamic Deterioration in Patients With Blunt Torso Trauma
J Trauma. 2010 Dec;69(6):1398-402

Brain chain

Therapeutic hypothermia (TH) has been associated with improved outcomes in term infants who present with moderate hypoxic-ischaemic encephalopathy (HIE). However, in the three major studies the time to initiate cooling was at approximately 4.5 postnatal hours. Many newborns are referred to specialist centres where cooling takes place from outlying hospitals (‘outborn’). It may be the case that earlier initiation of TH could improve outcomes, leading Takenouchi and colleagues to propose a ‘Chain of Brain Preservation’.
Given that most infants are outborn, a time sensitive education metaphor termed Chain of Brain Preservation may facilitate early recognition of high risk infants and thus earlier treatment.

Chain of Brain Preservation—A concept to facilitate early identification and initiation of hypothermia to infants at high risk for brain injury
Resuscitation. 2010 Dec;81(12):1637-41

Paediatric arrest outcomes

A study of out-of-hospital paediatric arrests in Melbourne gives some useful outcome data: overall, paediatric victims of out-of-hospital cardiac arrest survived to leave hospital in 7.7% of cases, which is similar to adult survival in the same emergency system (8%). Survival was very rare (<1%) unless there was return of spontaneous circulation prior to hospital arrival. Sixteen of the 193 cases studied had trauma, but the survival in this subgroup was not specifically documented. Epidemiology of paediatric out-of-hospital cardiac arrest in Melbourne, Australia
Resuscitation. 2010 Sep;81(9):1095-100

Scene times & penetrating trauma

An observational cohort study of penetrating trauma patients treated by the Mobile Emergency Care Unit in Copenhagen, Denmark over a seven-and-a-half year period sought to determine the effect of on-scene time on 30-day mortality.
In this setting, in cases of penetrating trauma to the chest, or abdomen, a Mobile Emergency Care Unit (MECU) and Basic Life Support unit are dispatched simultaneously, and rendezvous at the site of the incident. The MECU is staffed with consultants in anaesthesiology, intensive care and emergency medicine, as well as a specially trained ALS provider.

The physician manning the MECU administers medication and is able to perform procedures such as intubation, thoracocentesis, pleural drainage, intravenous and intraosseous access for fluid resuscitation. Although some patients were in cardiac arrest due to penetrating torso trauma (9 patients received chest compressions, and all were dead at 30 follow up), thoracotomy was not listed as a skill provided.
Of the 467 patients registered, 442 (94.6%) were identified at the 30-day follow-up, of whom 40 (9%) were dead. A higher mortality was found among patients treated on-scene for more than 20 min (p<0.0001), although on-scene time was not a significant predictor of 30-day mortality in the multivariate analysis; OR 3.71, 95% CI 0.66 to 20.70 (p<0.14). The number of procedures was significantly correlated to a higher mortality in the multivariate analysis.
The authors conclude that on-scene time might be important in penetrating trauma, and ALS procedures should not delay transport to definite care at the hospital. However their adjusted Odds Ratio for on scene time >20 minutes as a predictor of 30 day mortality was 3.71 with very wide 95% confidence intervals (0.66 to 20.70) and there were several weaknesses and confounding factors in the study which the authors acknowledge.
The only real information this study provides appears to be on the idiosyncrasies of the Copenhagen pre-hospital care system. Looking at their list of procedures and their practice of chest compressions in cardiac arrest due to penetrating trauma, it is very hard to ascertain what, if any, advantage their physicians offer over trained paramedics. As the authors point out: “Currently, strict guidelines are not practiced. Hence, the decision to treat by a ‘scoop and run’ or a ‘stay and play’ approach is at the discretion of the physician
On-scene time and outcome after penetrating trauma: an observational study
Emerg Med J. 2010 Oct 9. [Epub ahead of print]

Cirrhotic patients on ICU

The prognosis of cirrhotic patients with multiple organ failure is not universally dismal. A retrospective French study examined predictive factors of mortality and concluded: In-hospital survival rate of intensive care unit- admitted cirrhotic patients seemed acceptable, even in patients requiring life-sustaining treatments and/or with multiple organ failure on admission. The most important risk factor for in-hospital mortality was the severity of nonhematologic organ failure, as best assessed after 3 days. A trial of unrestricted intensive care for a few days could be proposed for select critically ill cirrhotic patients.
Cirrhotic patients in the medical intensive care unit: Early prognosis and long-term survival
Crit Care Med. 2010 Nov;38(11):2108-2116