Category Archives: ICU

Stuff relevant to patients on ICU

In CPR depth is good, but how deep to compress?

Some defibrillators have accelerometers capable of measuring chest compression depth during CPR. This allowed a study correlating compression depth with survival in out of hospital cardiac arrest.
More than half of patients received less than the 2005 recommended chest compression depth of 38–51 mm and >90% received less than the 2010 recommended depth of >50 mm. There was an inverse relationship between rate and depth, ie. rescuers had a tendency to ‘push hard, push slow’ or ‘push soft, push fast’.
The authors state:
We found an association between adequate compression depth and good outcomes but could not demonstrate that the 2010 recommendations are better than those from 2005. Although we believe that compression depth is an important component of CPR and should be measured routinely during cardiac arrest resuscitation, we believe that the optimal depth is currently unknown.


BACKGROUND: The 2010 international guidelines for cardiopulmonary resuscitation recently recommended an increase in the minimum compression depth from 38 to 50 mm, although there are limited human data to support this. We sought to study patterns of cardiopulmonary resuscitation compression depth and their associations with patient outcomes in out-of-hospital cardiac arrest cases treated by the 2005 guideline standards.

DESIGN: Prospective cohort.

SETTING: Seven U.S. and Canadian urban regions.

PATIENTS: We studied emergency medical services treated out-of-hospital cardiac arrest patients from the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest for whom electronic cardiopulmonary resuscitation compression depth data were available, from May 2006 to June 2009.

MEASUREMENTS: We calculated anterior chest wall depression in millimeters and the period of active cardiopulmonary resuscitation (chest compression fraction) for each minute of cardiopulmonary resuscitation. We controlled for covariates including compression rate and calculated adjusted odds ratios for any return of spontaneous circulation, 1-day survival, and hospital discharge.

MAIN RESULTS: We included 1029 adult patients from seven U.S. and Canadian cities with the following characteristics: Mean age 68 yrs; male 62%; bystander witnessed 40%; bystander cardiopulmonary resuscitation 37%; initial rhythms: Ventricular fibrillation/ventricular tachycardia 24%, pulseless electrical activity 16%, asystole 48%, other nonshockable 12%; outcomes: Return of spontaneous circulation 26%, 1-day survival 18%, discharge 5%. For all patients, median compression rate was 106 per minute, median compression fraction 0.65, and median compression depth 37.3 mm with 52.8% of cases having depth <38 mm and 91.6% having depth <50 mm. We found an inverse association between depth and compression rate ( p < .001). Adjusted odds ratios for all depth measures (mean values, categories, and range) showed strong trends toward better outcomes with increased depth for all three survival measures.
CONCLUSIONS: We found suboptimal compression depth in half of patients by 2005 guideline standards and almost all by 2010 standards as well as an inverse association between compression depth and rate. We found a strong association between survival outcomes and increased compression depth but no clear evidence to support or refute the 2010 recommendations of >50 mm. Although compression depth is an important component of cardiopulmonary resuscitation and should be measured routinely, the most effective depth is currently unknown.

What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation?
Crit Care Med. 2012 Apr;40(4):1192-8

Intubation of the critically ill in Scotland

Hi folks! Cliff has given me the helm of his blogsite for this week whilst he is teaching prehospital and critical care ultrasound with the Americans at Castlefest 2012
He invited me to write an article on this latest paper in British Journal of Anaesthesia on Scottish ICU audit of emergency tracheal intubation. For those who don’t know, Cliff has a proud Scottish heritage and this paper is a useful audit of his home land’s performance of this critical care intervention. I have done airway audits and this one is quite a reasonable 4 month effort albeit not every ICU in Scotland participated, which is not unusual for those wanting to do these kind of audits. Airway management gets a bit personal and some find review of their emergency airway performance to be confronting. It should not be. Now it’s a fine distinction but its important to be clear on this. A FAILED AIRWAY DOES NOT MEAN YOU ARE A FAILURE!! FAILED OXYGENATION IS ANOTHER STORY….
There are always recurring themes from audits like these and I will highlight a few.
The first and foremost, is the absolutely essential role of capnography for tracheal tube confirmation and monitoring of airway patency and ventilator status. My FDEAR aeromedical intubation audit showed this was an issue of patient safety that should be improved.
This Scottish ICU study revealed that capnography was used in only 54% of emergency intubations despite the vast majority being in hospital locations where such monitoring is available! This is a recurring theme amongst emergency airway audits and coroners reports like this one.
Paradoxically this Scottish audit had a high number of intubating doctors with greater than 24 months of anaesthetic training and one hypothesis I have is that as doctors become more confident in emergency intubations, perhaps less reliance is felt required on monitoring like capnography? In human factors research into anaesthetic related crises, we call this the invulnerability or superman complex : “If I say the tube has gone in, I must be right!”
Secondly, the length of anaesthetic training of the intubating doctor appeared related to overall airway success rates and a low complication rate. There was only one surgical airway required over the 4 month period and 794 recorded intubations. The authors discuss though the potential problems that may face up and coming critical care doctors in the United Kingdom who may not be exposed to terms of anaesthetic training of up to 2 years. My own personal view is that it does not and should not matter where you get your emergency airway training but it should be structured and specific to the work that you are going to do. Learning to do epidural anaesthesia in laboring women might not be so helpful for the bilateral pneumonia swine flu patient with a BMI of 50! And certainly no point learning to use airway equipment that you will rarely or never have available where you normally work!
Thirdly and I find this fascinating having heard talks and debates on this topic by Dr Scott Weingart and Dr Paul Mayo, but in this Scottish paper of bloody sick patients needing intubation, 8% were performed without paralytics at all and overall intubation success and number of attempts were not significantly different compared to the paralytic assisted group. My view is that overall in critically ill patients , paralytics are your friend as these folks need the airway secured, one way or another. However this paper and Dr Mayo’s work certainly demonstrate that sedation only intubation is successful and is a reasonable alternative.
Finally, 61% of these emergency intubations utilized propofol and there was an association with post intubation hypotension (systolic <70mmHg). Ketamine use was low at 3% and I think this just reflects the greater anaesthetic training of the doctors in the study. I am aware Cliff has done a previous podcast rant on Propofol assasins
I don’t want to rant and am not as good at it as Cliff. BUT Choose your poison carefully! This paper reminds us what we all know. The milk of amnesia has issues! Ask the Jackson family!
Anyway that’s enough for this paper. I gotta pick myself off the floor again after listening to Cliff’s propofol rant..
– Dr Minh Le Cong, Royal Flying Doctor Service, Australia

BACKGROUND: Complications associated with tracheal intubation may occur in up to 40% of critically ill patients. Since practice in emergency airway management varies between intensive care units (ICUs) and countries, complication rates may also differ. We undertook a prospective, observational study of tracheal intubation performed by critical care doctors in Scotland to identify practice, complications, and training.
METHODS: For 4 months, we collected data on any intubation performed by doctors working in critical care throughout Scotland except those in patients having elective surgery and those carried out before admission to hospital. We used a standardized data form to collect information on pre-induction physical state and organ support, the doctor carrying out the intubation, the techniques and drugs used, and complications noted.
RESULTS: Data from 794 intubations were analysed. Seventy per cent occurred in ICU and 18% occurred in emergency departments. The first-time intubation success rate was 91%, no patient required more than three attempts at intubation, and one patient required surgical tracheostomy. Severe hypoxaemia ( <80%) occurred in 22%, severe hypotension (systolic arterial pressure <80 mm Hg) in 20%, and oesophageal intubation in 2%. Three-quarters of intubations were performed by doctors with more than 24 months formal anaesthetic training and all but one doctor with <6 months training had senior supervision.
CONCLUSIONS: Tracheal intubation by critical care doctors in Scotland has a higher first-time success rate than described in previous reports of critical care intubation, and technical complications are few. Doctors carrying out intubation had undergone longer formal training in anaesthesia than described previously, and junior trainees are routinely supervised. Despite these good results, further work is necessary to reduce physiological complications and patient morbidity.

Tracheal intubation in the critically ill: a multi-centre national study of practice and complications
Br J Anaesth. 2012 May;108(5):792-9

Extubation guidelines

Tracheal extubation is a high risk procedure in anaesthesia and critical care. Until now most guidelines have focused on intubation, with little to guide the process of extubation. Complications may relate to the following issues:

  • Exaggerated reflexes – laryngospasm (which can lead to both hypoxia and negative pressure pulmonary oedema) and bronchospasm
  • Reduced airway reflexes
  • Dysfunctional laryngeal reflexes
  • Depletion of oxygen stores at extubation
  • Airway injury
  • Physiological compromise in other systems
  • Human factors

The goal is to ensure uninterrupted oxygen delivery to the patient’s lungs, avoid airway stimulation, and have a back-up plan, that would permit ventilation and re-intubation with minimum difficulty and delay should extubation fail.
The Difficult Airway Society has now published guidelines for the management of tracheal extubation, describing four steps:

Step 1: plan extubation.

Step 2: prepare for extubation.

Step 3: perform extubation.

Step 4: post-extubation care: recovery and follow-up.

During step 3, emphasis is on pre-oxygenation, positioning, and suction. This is followed by simultaneous deflation of the tracheal tube cuff and removal of the tube at the peak of a sustained inflation. This generates a passive exhalation, which may assist in the expulsion of secretions and possibly reduce the incidence of laryngospasm and breathholding.
The guideline refers to low-risk and at-risk extubations. ‘Low-risk’ (routine) extubation is characterised by the expectation that reintubation could be managed without difficulty, if required. ‘At-risk’ means the presence of general and/or airway risk factors that suggest that a patient may not be able to maintain his/her own airway after removal of the tracheal tube. ‘At-risk’ extubation is characterised by the concern that airway management may not be straightforward should reintubation be required.
These guidelines are written for the peri-operative patient but the text contains some interesting points that are pertinent to the ED or ICU patient. Some simple algorithms are presented:






Difficult Airway Society Guidelines for the management of tracheal extubation
Anaesthesia. 2012 Mar;67(3):318-40 Free full text

More guidelines from the Difficult Airway Society

Red cell transfusion guidelines

The AABB (formerly the American Association of Blood Banks has issued guidelines on red blood cell transfusion1, providing some number-based targets which may be helpful for some practitioners or organisations. Editorialist and heavyweight intensivist Jean-Louis Vincent argues for a more individual patient-based assessment2, and highlights some of the weaknesses of existing studies, in particular the often quoted but now fairly old TRICC study3 which suffered from poor recruitment and the possible lack of applicability to modern practice now that leucodepleted products are used.
Prof Vincent states:
Transfusion decisions need to consider individual patient characteristics, including age and the presence of CAD, to estimate a specific patient’s likelihood of benefit from transfusion. The decision to transfuse is too complex and important to be guided by a single number.


Description: Although approximately 85 million units of red blood cells (RBCs) are transfused annually worldwide, transfusion practices vary widely. The AABB (formerly, the American Association of Blood Banks) developed this guideline to provide clinical recommendations about hemoglobin concentration thresholds and other clinical variables that trigger RBC transfusions in hemodynamically stable adults and children.

Methods: These guidelines are based on a systematic review of the literature on randomized clinical trials evaluating transfusion thresholds. We performed a literature search from 1950 to February 2011 with no language restrictions. We examined the proportion of patients who received any RBC transfusion and the number of RBC units transfused to describe the effect of restrictive transfusion strategies on RBC use. To determine the clinical consequences of restrictive transfusion strategies, we examined overall mortality, nonfatal myocardial infarction, cardiac events, pulmonary edema, stroke, thromboembolism, renal failure, infection, hemorrhage, mental confusion, functional recovery, and length of hospital stay.

Recommendation 1: The AABB recommends adhering to a restrictive transfusion strategy (7 to 8 g/dL) in hospitalized, stable patients (Grade: strong recommendation; high-quality evidence).

Recommendation 2: The AABB suggests adhering to a restrictive strategy in hospitalized patients with preexisting cardiovascular disease and considering transfusion for patients with symptoms or a hemoglobin level of 8 g/dL or less (Grade: weak recommendation; moderate-quality evidence).

Recommendation 3: The AABB cannot recommend for or against a liberal or restrictive transfusion threshold for hospitalized, hemodynamically stable patients with the acute coronary syndrome (Grade: uncertain recommendation; very low-quality evidence).

Recommendation 4: The AABB suggests that transfusion decisions be influenced by symptoms as well as hemoglobin concentration (Grade: weak recommendation; low-quality evidence).

1. Red Blood Cell Transfusion: A Clinical Practice Guideline From the AABB
Ann Intern Med. 2012 Mar 26. [Epub ahead of print] Full Text
2. Indications for Blood Transfusions: Too Complex to Base on a Single Number?
Ann Intern Med. 2012 Mar 26. [Epub ahead of print] Full Text
3. A Multicenter, Randomized, Controlled Clinical Trial of Transfusion Requirements in Critical Care
N Engl J Med 1999; 340:409-417 Full Text

Ventilated patients better able to communicate pain with dexmedetomidine

A multicentre European trial on intensive care units showed dexmedetomidine was non-inferior to midazolam or propofol in achieving target sedation levels, but patients were better able to communicate pain compared with midazolam and propofol. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam, but not compared with propofol.


Context Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an α2-agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort.

Objective To determine the efficacy of dexmedetomidine vs midazolam or propofol (preferred usual care) in maintaining sedation; reducing duration of mechanical ventilation; and improving patients’ interaction with nursing care.

Design, Setting, and Patients Two phase 3 multicenter, randomized, double-blind trials carried out from 2007 to 2010. The MIDEX trial compared midazolam with dexmedetomidine in ICUs of 44 centers in 9 European countries; the PRODEX trial compared propofol with dexmedetomidine in 31 centers in 6 European countries and 2 centers in Russia. Included were adult ICU patients receiving mechanical ventilation who needed light to moderate sedation for more than 24 hours (midazolam, n = 251, vs dexmedetomidine, n = 249; propofol, n = 247, vs dexmedetomidine, n = 251).

Interventions Sedation with dexmedetomidine, midazolam, or propofol; daily sedation stops; and spontaneous breathing trials.

Main Outcome Measures For each trial, we tested whether dexmedetomidine was noninferior to control with respect to proportion of time at target sedation level (measured by Richmond Agitation-Sedation Scale) and superior to control with respect to duration of mechanical ventilation. Secondary end points were patients’ ability to communicate pain (measured using a visual analogue scale [VAS]) and length of ICU stay. Time at target sedation was analyzed in per-protocol population (midazolam, n = 233, vs dexmedetomidine, n = 227; propofol, n = 214, vs dexmedetomidine, n = 223).

Results Dexmedetomidine/midazolam ratio in time at target sedation was 1.07 (95% CI, 0.97-1.18) and dexmedetomidine/propofol, 1.00 (95% CI, 0.92-1.08). Median duration of mechanical ventilation appeared shorter with dexmedetomidine (123 hours [IQR, 67-337]) vs midazolam (164 hours [IQR, 92-380]; P = .03) but not with dexmedetomidine (97 hours [IQR, 45-257]) vs propofol (118 hours [IQR, 48-327]; P = .24). Patients’ interaction (measured using VAS) was improved with dexmedetomidine (estimated score difference vs midazolam, 19.7 [95% CI, 15.2-24.2]; P < .001; and vs propofol, 11.2 [95% CI, 6.4-15.9]; P < .001). Length of ICU and hospital stay and mortality were similar. Dexmedetomidine vs midazolam patients had more hypotension (51/247 [20.6%] vs 29/250 [11.6%]; P = .007) and bradycardia (35/247 [14.2%] vs 13/250 [5.2%]; P < .001).
Conclusions Among ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to midazolam and propofol in maintaining light to moderate sedation. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam and improved patients’ ability to communicate pain compared with midazolam and propofol. More adverse effects were associated with dexmedetomidine.

Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials
JAMA. 2012 Mar 21;307(11):1151-60

International recommendations for lung ultrasound

A multidisciplinary panel of 28 experts from eight countries reviewed the literature and came up with consensus guidelines in point-of-care lung ultrasound. There were some big names involved – all the big players in emergency/critical care ultrasound from around the World. Conspicuously absent were Matt and Mike from the Emergency Ultrasound Podcast, but maybe there was a maximum awesomeness limit or something.

Here are some snippets, taken out of context and without the grade of recommendation attached. Try to get hold of the original if you can, which might not be easy. I never understand it when ‘international recommendations’ are published as subscription-only articles. Either they want people to follow them or not. Oh well – here are some of their recommendations:
Pneumothorax

  • The sonographic signs of pneumothorax include the following: Presence of lung point(s); Absence of lung sliding; Absence of B-lines; Absence of lung pulse
  • The lung pulse refers to the subtle rhythmic movement of the visceral upon the parietal pleura with cardiac oscillations and is a rule-out sign for pneumothorax
  • In the supine patient, the sonographic technique consists of exploration of the least gravitationally dependent areas progressing more laterally.
  • Bedside lung ultrasound is a useful tool to differentiate between small and large pneumothorax, using detection of the lung point.

Interstitial syndrome

  • B-lines are defined as discrete laser-like vertical hyperechoic reverberation artifacts that arise from the pleural line (previously described as ‘‘comet tails’’), extend to the bottom of the screen without fading, and move synchronously with lung sliding.
  • The presence of multiple diffuse bilateral B-lines indicates interstitial syndrome. Causes of interstitial syndrome include the following conditions: Pulmonary edema of various causes; Interstitial pneumonia or pneumonitis; Diffuse parenchymal lung disease (pulmonary fibrosis)

Lung consolidation

  • The sonographic sign of lung consolidation is a subpleural echo-poor region or one with tissue-like echotexture.
  • Lung ultrasound is a clinically useful tool to rule in pneumonia; however, lung ultrasound does not rule out consolidations that do not reach the pleura.
  • In mechanically ventilated patients lung ultrasound should be considered as it is more accurate than portable chest radiography in the detection of consolidation.

Pleural effusion

  • Both of the following signs are present in almost all free effusions: A space (usually anechoic) between the parietal and visceral pleura; Respiratory movement of the lung within the effusion (‘‘sinusoid sign’’)
  • In opacities identified by chest radiography, lung ultrasound should be used because it is more accurate than chest radiography in distinguishing between effusion and consolidation.
  • Visualization of internal echoes, either of mobile particles or septa, is highly suggestive of exudate or hemothorax


BACKGROUND: The purpose of this study is to provide evidence-based and expert consensus recommendations for lung ultrasound with focus on emergency and critical care settings.

METHODS: A multidisciplinary panel of 28 experts from eight countries was involved. Literature was reviewed from January 1966 to June 2011. Consensus members searched multiple databases including Pubmed, Medline, OVID, Embase, and others. The process used to develop these evidence-based recommendations involved two phases: determining the level of quality of evidence and developing the recommendation. The quality of evidence is assessed by the grading of recommendation, assessment, development, and evaluation (GRADE) method. However, the GRADE system does not enforce a specific method on how the panel should reach decisions during the consensus process. Our methodology committee decided to utilize the RAND appropriateness method for panel judgment and decisions/consensus.

RESULTS: Seventy-three proposed statements were examined and discussed in three conferences held in Bologna, Pisa, and Rome. Each conference included two rounds of face-to-face modified Delphi technique. Anonymous panel voting followed each round. The panel did not reach an agreement and therefore did not adopt any recommendations for six statements. Weak/conditional recommendations were made for 2 statements, and strong recommendations were made for the remaining 65 statements. The statements were then recategorized and grouped to their current format. Internal and external peer-review processes took place before submission of the recommendations. Updates will occur at least every 4 years or whenever significant major changes in evidence appear.

CONCLUSIONS: This document reflects the overall results of the first consensus conference on “point-of-care” lung ultrasound. Statements were discussed and elaborated by experts who published the vast majority of papers on clinical use of lung ultrasound in the last 20 years. Recommendations were produced to guide implementation, development, and standardization of lung ultrasound in all relevant settings.

International evidence-based recommendations for point-of-care lung ultrasound
Intensive Care Med. 2012 Apr;38(4):577-91

Spinal imaging for the adult obtunded blunt trauma patient

‘You can’t clear the cervical spine until the patient wakes up!’ How often have you heard this said about a patient with severe traumatic brain injury who may not ‘wake up’ for weeks, if at all?
A controversial area, but many institutions now allow collar removal if a neck CT scan is normal. Does this rule out injury with 100% sensitivity? No – but it probably pushes the balance of risk towards removing the collar – an intervention with no evidence for benefit and plenty of reasons why it may be harmful to ventilated ICU patients. For example, clearing the cervical spine based on MDCT was associated with less delirium and less ventilator associated pneumonia, both of which have been associated with increased mortality in critically ill patients (this is referenced in the paper below).
The UK’s Intensive Care Society has had pragmatic guidelines along these lines since 2005, which can be found here. This month’s Intensive Care Medicine publishes an updated literature review providing some further support to this approach.


PURPOSE: Controversy exists over how to ‘clear’ (we mean enable the clinician to safely remove spinal precautions based on imaging and/or clinical examination) the spine of significant unstable injury among clinically unevaluable obtunded blunt trauma patients (OBTPs). This review provides a clinically relevant update of the available evidence since our last review and practice recommendations in 2004.

METHODS: Medline, Embase. Google Scholar, BestBETs, the trip database, BMJ clinical evidence and the Cochrane library were searched. Bibliographies of relevant studies were reviewed.

RESULTS: Plain radiography has low sensitivity for detecting unstable spinal injuries in OBTPs whereas multidetector-row computerised tomography (MDCT) approaches 100%. Magnetic resonance imaging (MRI) is inferior to MDCT for detecting bony injury but superior for detecting soft tissue injury with a sensitivity approaching 100%, although 40% of such injuries may be stable and ‘false positive’. For studies comparing MDCT with MRI for OBTPs; MRI following ‘normal’ CT may detect up to 7.5% missed injuries with an operative fixation in 0.29% and prolonged collar application in 4.3%. Increasing data is available on the complications associated with prolonged spinal immobilisation among a population where a minority have an actual injury.

CONCLUSIONS: Given the variability of screening performance it remains acceptable for clinicians to clear the spine of OBTPs using MDCT alone or MDCT followed by MRI, with implications to either approach. Ongoing research is needed and suggestions are made regarding this. It is essential clinicians and institutions audit their data to determine their likely screening performances in practice.

Clinical review: spinal imaging for the adult obtunded blunt trauma patient: update from 2004
Intensive Care Med. 2012 Mar 10. [Epub ahead of print]

Awake video laryngoscopy

A nice study reminds of us the option of awake video laryngoscopy as an alternative to fibreoptic instrumentation of the airway. The study was done on healthy volunteers so we have no idea of the applicability to the patient group we would be interested in using this on – those with an anticipated difficult airway sufficiently stable to allow tolerance and preparation for this procedure. The videolaryngoscopy was performed with patients upright in a face-to-face position, with the laryngoscope inserted in the inverted handle-down (“tomahawk”) position (this is the way I remove fishbones using a direct laryngoscope and Magill’s forceps).
Visualization was faster with video laryngoscopy, and grade of view was similar in both groups. Cormack Lehane grading was used to assess view, whereas the POGO score (percentage of glottic opening) might have provided a better means of assessing which view is superior. The study did not evaluate endotracheal tube insertion.
Local anaesthesia was provided with 5 ml nebulised 4% lidocaine and weight-based doses of 4% lidocaine were then sprayed into the nose and oropharynx through a mucosal atomisation device to a maximum of 9 mg/kg. Oxymetazoline was applied nasally for the flexible fibreoptic laryngoscopy.


Study objectives: We compare laryngoscopic quality and time to highest-grade view between a face-to-face approach with the GlideScope and traditional flexible fiber-optic laryngoscopy in awake, upright volunteers.

Methods: This was a prospective, randomized, crossover study in which we performed awake laryngoscopy under local anesthesia on 23 healthy volunteers, using both a GlideScope video laryngoscopy face-to-face technique with the blade held upside down and flexible fiber-optic laryngoscopy. Operator reports of Cormack-Lehane laryngoscopic views and video-reviewed time to highest-grade view, as well as number of attempts, were recorded.

Results: Ten women and 13 men participated. A grade II or better view was obtained with GlideScope video laryngoscopy in 22 of 23 (95.6%) participants and in 23 of 23 (100%) participants with flexible fiber-optic laryngoscopy (relative risk GlideScope video laryngoscopy versus flexible fiber-optic laryngoscopy 0.96; 95% confidence interval 0.88 to 1.04). Median time to highest-grade view for GlideScope video laryngoscopy was 16 seconds (interquartile range 9 to 34) versus 51 seconds (interquartile range 35 to 96) for flexible fiber-optic laryngoscopy. A distribution of interindividual differences demonstrated that GlideScope video laryngoscopy was, on average, 39 seconds faster than flexible fiber-optic laryngoscopy (95% confidence interval 0.2 to 76.9 seconds).

Conclusion: GlideScope video laryngoscopy can be used to obtain a Cormack-Lehane grade II or better view in the majority of awake, healthy volunteers when an upright face-to-face approach is used and was slightly faster than traditional flexible fiber-optic laryngoscopy. However, flexible fiber-optic laryngoscopy may be more reliable
at obtaining high-grade views of the larynx. Awake, face-to-face GlideScope use may offer an alternative approach to the difficulty airway, particularly among providers uncomfortable with flexible fiber-optic laryngoscopy.

GlideScope Versus Flexible Fiber Optic for Awake Upright Laryngoscopy
Ann Emerg Med. 2012 Mar;59(3):159-64

Phentolamine for neurogenic pulmonary oedema

A single case report might not be practice changing, but it’s helpful to know about this option:
A patient with acute intracerebral haemorrhage developed hyoxaemia due to neurogenic pulmonary oedema, accompanied by a labile blood pressure and elevated catecholamine levels.
Nicardipine and other antihypertensive agents including metoprolol, hydralazine, and labetalol were tried without benefit, and the patient continued to deteriorate.
Phentolamine was tried. The introduction, withdrawal, and reintroduction of phentolamine and the clinical status of the patient is described convincingly:


a phentolamine infusion was started at 0.17 mg/min and titrated for BP control. Over 6 h, the FIO2 requirements dropped precipitously, gas exchange improved, and the chest radiograph showed improvement of pulmonary edema. When the hospital supply of phentolamine was exhausted, the clinical status deteriorated rapidly. Within just 15 h of the discontinuation of phentolamine, the PaO2 fell from 166 mm Hg to 66 mm Hg, and FIO2 requirements rose from 60% to 100%. When the phentolamine supply was replenished and the infusion restarted, the same rapid improvement was observed and BP stabilized.

Phentolamine is a potent competitive antagonist at both alpha 1 and alpha 2 receptors . Phentolamine causes a reduction in peripheral resistance through blockade of alpha 1 receptors and possibly alpha 2 receptors on vascular smooth muscle.


Abstract
Neurogenic pulmonary edema (NPE) is a clinical syndrome characterized by the acute onset of pulmonary edema following a significant CNS insult. The cause is believed to be a surge of catecholamines that results in cardiopulmonary dysfunction. Although there are myriad case reports describing CNS events that are associated with this syndrome, few studies have identified specific treatment modalities. We present a case of NPE caused by an intracranial hemorrhage from a ruptured arteriovenous malformation. We uniquely document a rise and fall of serum catecholamine levels correlating with disease activity and a dramatic clinical response to IV phentolamine.

Neurogenic Pulmonary Edema: Successful Treatment With IV Phentolamine
Chest March 2012 vol. 141 no. 3 793-795

Clotbusting wisdom on tap – your questions answered

The prevention and management of venous thromboembolic disease is a huge topic, which generates questions for emergency, critical care, and acute physicians during many shifts:

  • How long should someone requiring cardioversion for atrial fibrillation be anticoagulated for?
  • How should I provide thromboprophylaxis for this intubated patient?
  • This patient with submassive pulmonary embolism isn’t hypotensive yet. Can I thrombolyse them? Can I?
  • There’s a large superficial vein thrombosis in that limb – is anticoagulation indicated?
  • This asymptomatic patient on warfarin has an INR of 9.0 – should I reverse them?
  • Do I need to add Vitamin K if I’ve reversed warfarin with prothrombin complex concentrate?

The answers to these – and many, many more – questions are provided in one of the most comprehensive guidelines I’ve ever come across. I can see myself clicking on the link below in future when on duty in the ED.
Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines
Chest. 2012 Feb;141(2 Suppl) Full Text