Tag Archives: outcome

COPD and heart disease interactions

Ischaemic heart disease (IHD) and chronic obstructive pulmonary disease (COPD) often affect the same patient; in fact, more than one-third of patients with angiography-proven IHD also have COPD on spirometry(1).
A recent study suggests COPD exacerbations in patients with IHD were associated with longer (5 more days) recovery times and suffered more severe breathlessness between exacerbations(2).
An accompanying editorial highlights some important points:

  • Patients admitted with COPD exacerbations are more susceptible to myocardial infarction during the admission.
  • Infective COPD exacerbations may contribute to heart failure through systemic inflammation, autonomic activation, and increased fluid in the lung. Lung infection can increase ventilation/perfusion mismatch and increased work of breathing, further straining the heart.
  • Heart failure can be very difficult to diagnose during a COPD exacerbation because cough, dyspnoea and wheeze are common to both disorders. Physical examination may not be discriminatory, and chest radiography is insensitive to milder degrees of heart failure.

The authors recommed a high index of suspicion combined with consideration of biomarkers (BNP or pro-BNP) and imaging such as echocardiography or even nuclear medicine scans, cardiac MRI, and cardiac catheterisation.
So, next time you’re managing a COPD exacerbation, ask yourself:

  • Could there be concomitant heart failure contributing to symptoms?
  • If not, is the patient at risk of cardiac events during this admission, for which we need to be vigilant?
  • Do I need to consider additional laboratory (BNP) or imaging (echo) investigations? Remember BNP may be elevated in pneumonia and other non-cardiac critical illness, although a normal BNP rules out heart failure.
  • Should I add empiric anti-failure therapy to the acute treatment regimen?
  • If there is combined COPD exacerbation and heart failure, are there any conflicting priorities in therapy (eg. the pros and cons of beta-agonists, anticholinergics, and steroids)?

1. The complex relationship between ischemic heart disease and COPD exacerbations
Chest. 2012 Apr;141(4):837-8
2. The impact of ischemic heart disease on symptoms, health status, and exacerbations in patients with COPD
Chest. 2012 Apr;141(4):851-7
[EXPAND Click to read abstract]


BACKGROUND: Comorbid ischemic heart disease (IHD) is a common and important cause of morbidity and mortality in patients with COPD. The impact of IHD on COPD in terms of a patient’s health status, exercise capacity, and symptoms is not well understood.

METHODS: We analyzed stable-state data of 386 patients from the London COPD cohort between 1995 and 2009 and prospectively collected exacerbation data in those who had completed symptom diaries for ≥ 1 year.

RESULTS: Sixty-four patients (16.6%) with IHD had significantly worse health status as measured by the St. George Respiratory Questionnaire (56.9 ± 18.5 vs 49.1 ± 19.0, P = .003), and a larger proportion of this group reported more severe breathlessness in the stable state, with a Medical Research Council dyspnea score of ≥ 4 (50.9% vs 35.1%, P = .029). In subsets of the sample, stable patients with COPD with IHD had a higher median (interquartile range [IQR]) serum N-terminal pro-brain natriuretic peptide concentration than those without IHD (38 [15, 107] pg/mL vs 12 [6, 21] pg/mL, P = .004) and a lower exercise capacity (6-min walk distance, 225 ± 89 m vs 317 ± 85 m; P = .002). COPD exacerbations were not more frequent in patients with IHD (median, 1.95 [IQR, 1.20, 3.12] vs 1.86 (IQR, 0.75, 3.96) per year; P = .294), but the median symptom recovery time was 5 days longer (17.0 [IQR, 9.8, 24.2] vs 12.0 [IQR, 8.0, 18.0]; P = .009), resulting in significantly more days per year reporting exacerbation symptoms (median, 35.4 [IQR, 13.4, 60.7] vs 22.2 [IQR, 5.7, 42.6]; P = .028). These findings were replicated in multivariate analyses allowing for age, sex, FEV(1), and exacerbation frequency where applicable.

CONCLUSIONS: Comorbid IHD is associated with worse health status, lower exercise capacity, and more dyspnea in stable patients with COPD as well as with longer exacerbations but not with an increased exacerbation frequency.

[/EXPAND]

Confidential stuff – in hospital cardiac arrests

A new report describes room for improvement in the care of cardiac arrest patients in hospital1.
The National Confidential Enquiry into Patient Outcome and Death (NCEPOD) aimed to describe variability and identify remediable factors in the process of care of adult patients who receive resuscitation in hospital, including factors which may affect the decision to initiate the resuscitation attempt, the outcome and the quality of care following the resuscitation attempt, and antecedents in the preceding 48 hours that may have offered opportunities for intervention to prevent cardiac arrest.
Data were captured over a 14 day study period in late 2010 from UK hospitals, and were reviewed by an expert panel.
The summary is available here. I have picked out some findings of interest:

  • An adequate history was not recorded in 70/489 cases (14%) and clinical examination was incomplete at first contact in 117/479 cases (24%).
  • Appreciation of the severity of the situation was lacking in 74/416 (18%).
  • Timely escalation to more senior doctors was lacking in 61/347 (18%).
  • Decisions about CPR status were documented in the admission notes in 44/435 cases (10%). This is despite the high incidence of chronic disease and almost one in four cases being expected to be rapidly fatal on admission.
  • Where time to first consultant review could be identified it was more than 12 hours in 95/198 cases (48%).
  • Appreciation of urgency, supervision of junior doctors and the seeking of advice from senior doctors were rated ‘poor’ by Advisors.
  • Physiological instability was noted in 322/444 (73%) of patients who subsequently had a cardiac arrest.
  • Advisors considered that warning signs for cardiac arrest were present in 344/462 (75%) of cases. These warning signs were recognised poorly, acted on infrequently, and escalated to more senior doctors infrequently.
  • There was no evidence of escalation to more senior staff in patients who had multiple reviews.
  • Advisors considered that the cardiac arrest was predictable in 289/454 (64%) and potentially avoidable in 156/413 (38%) of cases.
  • The Advisors reported problems during the resuscitation attempt in 91/526 cases (17%). Of these, 36/91 were associated with airway management.
  • Survival to discharge after in-hospital cardiac arrest was 14.6% (85/581).
  • Only 9/165 (5.5%) patients who had an arrest in asystole survived to hospital discharge.
  • Survival to discharge after a cardiac arrest at night was much lower than after a cardiac arrest during the day time (13/176; 7.4% v 44/218; 20.1%).

 
In the opinion of the treating clinicians, earlier treatment of the problem and better monitoring may have improved outcome:

Compare these findings with a smaller scale confidential enquiry into the care of patients who ended up in intensive care units, published exactly 14 years ago by McQuillan et al2:
“The main causes of suboptimal care were failure of organisation, lack of knowledge, failure to appreciate clinical urgency, lack of supervision, and failure to seek advice.”
One of the co-authors of the McQuillan study, Professor Gary Smith , has spent years improving training in and awareness of the importance of recognition of critical illness, and pioneered the “ALERT” Course TM: Acute Life-threatening Emergencies, Recognition, and Treatment. Professor Smith provides commentary on the NCEPOD report and the slides are available here, including a reminder of the ‘Chain of Prevention’3.

It’s a shame these issues remain a problem but it is heartening to see NCEPOD tackle this important topic and provide recommendations that UK hospitals will have to act upon. It is further credit to the vision of Pete McQuillan, Gary Smith and their colleague Bruce Taylor (another co-author of the 1998 confidential inquiry). These guys opened my eyes to the world of critical care and trained me for 18 months on their ICU, which remains a beacon site for critical care expertise and training. Without their inspiration, I may not have ended up in emergency medicine-critical care and I doubt very much that Resus.ME would exist.

1. Cardiac Arrest Procedures: Time to Intervene? (2012)
National Confidential Enquiry into Patient Outcome and Death (NCEPOD)
2. Confidential inquiry into quality of care before admission to intensive care
BMJ 1998 Jun 20;316(7148):1853-8 Free Full Text
[EXPAND Click to read abstract]


OBJECTIVE: To examine the prevalence, nature, causes, and consequences of suboptimal care before admission to intensive care units, and to suggest possible solutions.

DESIGN: Prospective confidential inquiry on the basis of structured interviews and questionnaires.

SETTING: A large district general hospital and a teaching hospital.

SUBJECTS: A cohort of 100 consecutive adult emergency admissions, 50 in each centre.

MAIN OUTCOME MEASURES: Opinions of two external assessors on quality of care especially recognition, investigation, monitoring, and management of abnormalities of airway, breathing, and circulation, and oxygen therapy and monitoring.

RESULTS: Assessors agreed that 20 patients were well managed (group 1) and 54 patients received suboptimal care (group 2). Assessors disagreed on quality of management of 26 patients (group 3). The casemix and severity of illness, defined by the acute physiology and chronic health evaluation (APACHE II) score, were similar between centres and the three groups. In groups 1, 2, and 3 intensive care mortalities were 5 (25%), 26 (48%), and 6 (23%) respectively (P=0.04) (group 1 versus group 2, P=0.07). Hospital mortalities were 7 (35%), 30 (56%), and 8 (31%) (P=0.07) and standardised hospital mortality ratios (95% confidence intervals) were 1.23 (0.49 to 2.54), 1.4 (0.94 to 2.0), and 1.26 (0.54 to 2.48) respectively. Admission to intensive care was considered late in 37 (69%) patients in group 2. Overall, a minimum of 4.5% and a maximum of 41% of admissions were considered potentially avoidable. Suboptimal care contributed to morbidity or mortality in most instances. The main causes of suboptimal care were failure of organisation, lack of knowledge, failure to appreciate clinical urgency, lack of supervision, and failure to seek advice.

CONCLUSIONS: The management of airway, breathing, and circulation, and oxygen therapy and monitoring in severely ill patients before admissionto intensive care units may frequently be suboptimal. Major consequences may include increased morbidity and mortality and requirement forintensive care. Possible solutions include improved teaching, establishment of medical emergency teams, and widespread debate on the structure and process of acute care.

[/EXPAND]
3. In-hospital cardiac arrest: is it time for an in-hospital ‘chain of prevention’?
Resuscitation. 2010 Sep;81(9):1209-11
[EXPAND Click to read abstract]


The ‘chain of survival’ has been a useful tool for improving the understanding of, and the quality of the response to, cardiac arrest for many years. In the 2005 European Resuscitation Council Guidelines the importance of recognising critical illness and preventing cardiac arrest was highlighted by their inclusion as the first link in a new four-ring ‘chain of survival’. However, recognising critical illness and preventing cardiac arrest are complex tasks, each requiring the presence of several essential steps to ensure clinical success. This article proposes the adoption of an additional chain for in-hospital settings–a ‘chain of prevention’–to assist hospitals in structuring their care processes to prevent and detect patient deterioration and cardiac arrest. The five rings of the chain represent ‘staff education’, ‘monitoring’, ‘recognition’, the ‘call for help’ and the ‘response’. It is believed that a ‘chain of prevention’ has the potential to be understood well by hospital clinical staff of all grades, disciplines and specialties, patients, and their families and friends. The chain provides a structure for research to identify the importance of each of the various components of rapid response systems.

[/EXPAND]

Is diastolic worse than systolic dysfunction in sepsis?

Septic myocardial dysfunction is a well recognised contributor to shock in sepsis but for many of us we assume this to be gross systolic impairment. Interestingly a recent study highlights that patients with severe sepsis and septic shock frequently have diastolic dysfunction1. They found that diastolic dysfunction was the strongest independent predictor of early mortality, even after adjusting for the APACHE-II score and other predictors of mortality.
In this study, 9.1% of severe sepsis/septic shock patients had isolated systolic dysfunction, 14.1% had combined systolic and diastolic dysfunction, and 38% had isolated diastolic dysfunction.
Importantly, the authors point out that although diastolic dysfunction is associated with age, hypertension, diabetes mellitus, and ischaemic heart disease, diastolic dysfunction is a stronger independent predictor of mortality than age and the other co-morbidities. However, a limitation of the study acknowledged by the authors is that it did not include follow-up echocardiography examinations, so we do not know whether sepsis was responsible for a transient diastolic dysfunction or whether the observed diastolic dysfunction was a pre-existing condition.
Both troponin and NT-ProBNP elevations also predicted mortality.
Want to know how to measure diastolic dysfunction? These authors measured mitral annular early-diastolic peak velocity, or the e’-wave (called ‘e prime’). It is a way of seeing how fast myocardial tissue relaxes in diastole, and if its peak velocity is slow (in this case < 8cm/s) there is diastolic dysfunction. We measure speed using Doppler, and in this case we’re looking at the speed of heart tissue (as opposed to the blood cells within the heart chambers) so we do ‘Tissue Doppler Imaging’, or TDI. You need an echo machine with pulsed-wave Doppler, and you need to be able to get an apical view. This is explained really nicely here2 but if you don’t have the time or the echopassion to read a whole article on TDI watch this one minute video (BY emergency physicians FOR emergency physicians!) on diastology, where TDI measurement of e’ is shown from 45 seconds into the video.
For reference, there is some more detail on diastolic function measurements at the Echobasics site.

If you think you can cope with any more of this level of awesomeness and want these geniuses to talk to you from your smartphone in the ED then get the free One Minute Ultrasound app for Android or Apple devices.


AIMS: Systolic dysfunction in septic shock is well recognized and, paradoxically, predicts better outcome. In contrast, diastolic dysfunction is often ignored and its role in determining early mortality from sepsis has not been adequately investigated.

METHODS AND RESULTS: A cohort of 262 intensive care unit patients with severe sepsis or septic shock underwent two echocardiography examinations early in the course of their disease. All clinical, laboratory, and survival data were prospectively collected. Ninety-five (36%) patients died in the hospital. Reduced mitral annular e’-wave was the strongest predictor of mortality, even after adjusting for the APACHE-II score, low urine output, low left ventricular stroke volume index, and lowest oxygen saturation, the other independent predictors of mortality (Cox’s proportional hazards: Wald = 21.5, 16.3, 9.91, 7.0 and 6.6, P< 0.0001, <0.0001, 0.002, 0.008, and 0.010, respectively). Patients with systolic dysfunction only (left ventricular ejection fraction ≤50%), diastolic dysfunction only (e’-wave <8 cm/s), or combined systolic and diastolic dysfunction (9.1, 40.4, and 14.1% of the patients, respectively) had higher mortality than those with no diastolic or systolic dysfunction (hazard ratio = 2.9, 6.0, 6.2, P= 0.035, <0.0001, <0.0001, respectively) and had significantly higher serum levels of high-sensitivity troponin-T and N-terminal pro-B-type natriuretic peptide (NT-proBNP). High-sensitivity troponin-T was only minimally elevated, whereas serum levels of NT-proBNP were markedly elevated [median (inter-quartile range): 0.07 (0.02-0.17) ng/mL and 5762 (1001-15 962) pg/mL, respectively], though both predicted mortality even after adjusting for highest creatinine levels (Wald = 5.8, 21.4 and 2.3, P= 0.015, <0.001 and 0.13).

CONCLUSION: Diastolic dysfunction is common and is a major predictor of mortality in severe sepsis and septic shock.

1. Diastolic dysfunction and mortality in severe sepsis and septic shock
Eur Heart J. 2012 Apr;33(7):895-903
2. A clinician’s guide to tissue Doppler imaging
Circulation. 2006 Mar 14;113(10):e396-8 Free Full Text

Thrombolytic Therapy in Unstable Patients with PE

Most of us would give strong consideration to giving thrombolytics to patients with massive pulmonary embolism (PE), which is in keeping with many guidelines. Some physicians remain reluctant to do so, often citing the lack of good evidence. It is true that large scale RCTs have not been done in this population. The authors of this recent retrospective study state:


There are no definitive trials that prove the value of thrombolytic therapy in unstable patients with pulmonary embolism. It is extremely remote that a randomized controlled trial will be performed in the future. We therefore analyzed the database of the Nationwide Inpatient Sample to test the hypothesis that thrombolytic therapy reduces case fatality rate in unstable patients with acute pulmonary embolism.

They demonstrate a striking difference in mortality when thrombolysis is given to unstable patients with PE, which is further reduced with the addition of a vena cava filter. ‘Unstable’ was defined as having a listed code for shock or ventilator dependence.

Associated comorbid conditions were more often present in those who did not receive thrombolytic therapy than in those who did. However in their discussion the authors add:


Although unstable patients who received thrombolytic therapy had fewer comorbid conditions than those who did not, this would not explain the difference in case fatality rate because unstable patients with a primary diagnosis of pulmonary embolism and none of the comorbid conditions…also showed a lower case fatality rate with thrombolytic therapy. Therefore, differences in comorbid conditions in this group were eliminated as a possible cause of the lower case fatality rate in unstable patients who received thrombolytic therapy.

They round off their conclusion with:


Despite the marked reduction of case fatality rate with thrombolytic therapy in unstable patients, only 30% of unstable patients received it, and the proportion receiving thrombolytic therapy is diminishing. On the basis of these data, thrombolytic therapy in combination with a vena cava filter in unstable patients with acute pulmonary embolism seems indicated.

Many thanks to Dr Daniel Horner for highlighting this paper.


BACKGROUND: Data are sparse and inconsistent regarding whether thrombolytic therapy reduces case fatality rate in unstable patients with acute pulmonary embolism. We tested the hypothesis that thrombolytic therapy reduces case fatality rate in such patients.

METHODS: In-hospital all-cause case fatality rate according to treatment was determined in unstable patients with pulmonary embolism who were discharged from short-stay hospitals throughout the United States from 1999 to 2008 by using data from the Nationwide Inpatient Sample. Unstable patients were in shock or ventilator dependent.

RESULTS: Among unstable patients with pulmonary embolism, 21,390 of 72,230 (30%) received thrombolytic therapy. In-hospital all-cause case fatality rate in unstable patients with thrombolytic therapy was 3105 of 21,390 (15%) versus 23,820 of 50,840 (47%) without thrombolytic therapy (P< .0001). All-cause case fatality rate in unstable patients with thrombolytic therapy plus a vena cava filter was 505 of 6630 (7.6%) versus 4260 of 12,850 (33%) with a filter alone (P<.0001). Case fatality rate attributable to pulmonary embolism in unstable patients was 820 of 9810 (8.4%) with thrombolytic therapy versus 1080 of 2600 (42%) with no thrombolytic therapy (P<.0001). Case fatality rate attributable to pulmonary embolism in unstable patients with thrombolytic therapy plus vena cava filter was 70 of 2590 (2.7%) versus 160 of 600 (27%) with a filter alone (P<.0001).
CONCLUSION: In-hospital all-cause case fatality rate and case fatality rate attributable to pulmonary embolism in unstable patients was lower in those who received thrombolytic therapy. Thrombolytic therapy resulted in a lower case fatality rate than using vena cava filters alone, and the combination resulted in an even lower case fatality rate. Thrombolytic therapy in combination with a vena cava filter in unstable patients with acute pulmonary embolism seems indicated.

Thrombolytic Therapy in Unstable Patients with Acute Pulmonary Embolism: Saves Lives but Underused
Am J Med. 2012 May;125(5):465-70

T waves in V1-V3 were not associated with badness

This long term follow up study showed that T-wave inversions in right precordial leads are not associated with adverse outcome.

No worries, mate

Yikes!


Background-: T-wave inversion in right precordial leads V1 to V3 is a relatively common finding in a 12-lead ECG of children and adolescents and is infrequently found also in healthy adults. However, this ECG pattern can also be the first presentation of arrhythmogenic right ventricular cardiomyopathy. The prevalence and prognostic significance of T-wave inversions in the middle-aged general population are not well known.

Methods and Results-: We evaluated 12-lead ECGs of 10 899 Finnish middle-aged subjects (52% men, mean age 44+/-8.5 years) recorded between 1966 and 1972 for the presence of inverted T waves and followed the subjects for 30+/-11 years. Primary end points were all-cause mortality, cardiac mortality, and arrhythmic death. T-wave inversions in right precordial leads V1 to V3 were present in 54 (0.5%) of the subjects. In addition, 76 (0.7%) of the subjects had inverted T waves present only in leads other than V1 to V3. Right precordial T-wave inversions did not predict increased mortality (not significant for all end points). However, inverted T waves in leads other than V1 to V3 were associated with an increased risk of cardiac and arrhythmic death (P<0.001 for both).

Conclusions-: T-wave inversions in right precordial leads are relatively rare in the general population, and are not associated with adverse outcome. Increased mortality risk associated with inverted T waves in other leads may reflect the presence of an underlying structural heart disease.

Prevalence and prognostic significance of T-wave inversions in right precordial leads of a 12-lead electrocardiogram in the middle-aged subjects
Circulation. 2012 May 29;125(21):2572-7

Nonshockable arrest survival improves with uninterrupted compressions

A study of nonshockable out of hospital cardiac arrest survival showed significant improvement in short- and long-term survival and neurological outcome after implementation of a protocol consistent with CPR guidelines that prioritised chest compressions. These improvements were especially evident among arrests attributable to a cardiac cause, although there was no evidence of harm among arrests attributable to a noncardiac cause.
This was not a randomised trial so unrecognised factors may have contributed to the improved outcome in addition to the change in CPR protocol. However, it is interesting as it provides up to date survival rates from a large population sample: Non shockable out of hospital cardiac arrests achieve return of spontaneous circulation in 34%, 6.8% are discharged from hospital (5.1% with a favourable neurological outcome), and 4.9% survived one year.
The breakdown between PEA and asystole is of course telling, and unsurprising, with 12.8% versus 1.1% being discharged with a favourable neurological outcome, respectively. I would imagine then that some of the PEA patients had beating hearts with hypotension extreme enough to cause pulselessness (pseudo-electromechanical dissociation) – clinically a ‘cardiac arrest’ but really nothing of the sort, and the reason we use cardiac ultrasound to prognosticate.


BACKGROUND: Out-of-hospital cardiac arrest (OHCA) claims millions of lives worldwide each year. OHCA survival from shockable arrhythmias (ventricular fibrillation/ tachycardia) improved in several communities after implementation of American Heart Association resuscitation guidelines that eliminated “stacked” shocks and emphasized chest compressions. “Nonshockable” rhythms are now the predominant presentation of OHCA; the benefit of such treatments on nonshockable rhythms is uncertain.

METHODS AND RESULTS: We studied 3960 patients with nontraumatic OHCA from nonshockable initial rhythms treated by prehospital providers in King County, Washington, over a 10-year period. Outcomes during a 5-year intervention period after adoption of new resuscitation guidelines were compared with the previous 5-year historical control period. The primary outcome was 1-year survival. Patient demographics and resuscitation characteristics were similar between the control (n=1774) and intervention (n=2186) groups, among whom 471 of 1774 patients (27%) versus 742 of 2186 patients (34%), respectively, achieved return of spontaneous circulation; 82 (4.6%) versus 149 (6.8%) were discharged from hospital, 60 (3.4%) versus 112 (5.1%) with favorable neurological outcome; 73 (4.1%) versus 135 (6.2%) survived 1 month; and 48 (2.7%) versus 106 patients (4.9%) survived 1 year (all P≤0.005). After adjustment for potential confounders, the intervention period was associated with an improved odds of 1.50 (95% confidence interval, 1.29-1.74) for return of spontaneous circulation, 1.53 (95% confidence interval, 1.14-2.05) for hospital survival, 1.56 (95% confidence interval, 1.11-2.18) for favorable neurological status, 1.54 (95% confidence interval, 1.14-2.10) for 1-month survival, and 1.85 (95% confidence interval, 1.29-2.66) for 1-year survival.

CONCLUSION: Outcomes from OHCA resulting from nonshockable rhythms, although poor by comparison with shockable rhythm presentations, improved significantly after implementation of resuscitation guideline changes, suggesting their potential to benefit all presentations of OHCA.

Impact of changes in resuscitation practice on survival and neurological outcome after out-of-hospital cardiac arrest resulting from nonshockable arrhythmia
Circulation. 2012 Apr 10;125(14):1787-94

End-Tidal CO2 as a Predictor of Cardiac Arrest Survival



In one of largest studies to date of prehospital capnography in cardiac arrest, an initial EtCO2 >10 mmHg (1.3 kPa) was associated with an almost five-fold higher rate of return of spontaneous circulation (ROSC). In addition, a decrease in the EtCO2 during resuscitative events of >25% was associated with a significant increase in mortality, independent of other variables known to affect outcome.

The authors conclude: “EtCO2 values should be included as important variables in protocols to terminate or continue resuscitation in the prehospital setting“.


OBJECTIVE: The objective of this study was to evaluate initial end-tidal CO2 (EtCO2) as a predictor of survival in out-of-hospital cardiac arrest.

METHODS: This was a retrospective study of all adult, non-traumatic, out-of-hospital, cardiac arrests during 2006 and 2007 in Los Angeles, California. The primary outcome variable was attaining return of spontaneous circulation (ROSC) in the field. All demographic information was reviewed and logistic regression analysis was performed to determine which variables of the cardiac arrest were significantly associated with ROSC.

RESULTS: There were 3,121 cardiac arrests included in the study, of which 1,689 (54.4%) were witnessed, and 516 (16.9%) were primary ventricular fibrillation (VF). The mean initial EtCO2 was 18.7 (95%CI = 18.2-19.3) for all patients. Return of spontaneous circulation was achieved in 695 patients (22.4%) for which the mean initial EtCO2 was 27.6 (95%CI = 26.3-29.0). For patients who failed to achieve ROSC, the mean EtCO2 was 16.0 (95%CI = 15.5-16.5). The following variables were significantly associated with achieving ROSC: witnessed arrest (OR = 1.51; 95%CI = 1.07-2.12); initial EtCO2 >10 (OR = 4.79; 95%CI = 3.10-4.42); and EtCO2 dropping <25% during the resuscitation (OR = 2.82; 95%CI = 2.01-3.97).The combination of male gender, lack of bystander cardiopulmonary resuscitation, unwitnessed collapse, non-vfib arrest, initial EtCO2 ≤10 and EtCO2 falling > 25% was 97% predictive of failure to achieve ROSC.

CONCLUSIONS: An initial EtCO2 >10 and the absence of a falling EtCO2 >25% from baseline were significantly associated with achieving ROSC in out-of-hospital cardiac arrest. These additional variables should be incorporated in termination of resuscitation algorithms in the prehospital setting.

End-Tidal CO2 as a Predictor of Survival in Out-of-Hospital Cardiac Arres
Prehosp Disaster Med. 2011 Jun;26(3):148-50

Out-of hospital traumatic paediatric cardiac arrest

This small study on traumatic arrests in children1 refutes the “100% mortality from traumatic arrest” dogma that people still spout and gives information on the mechanisms associated with survival: drowning and strangulation were associated with greater rates of survival to hospital admission compared with blunt, penetrating, and other traumas. Overall, drowning had the greatest rate of survival to discharge (19.1%).
I would like to know the injuries sustained in non-survivors, to determine whether they were potentially treatable. Strikingly, in the list of prehospital procedures performed, there were NO attempts at pleural decompression, something that is standard in traumatic arrest protocols in prehospital services were I have worked.
It is interesting to compare these results with those of the London HEMS team2, who for traumatic paediatric arrest achieved 19/80 (23.8%) survival to discharged from the emergency department and 7/80 (8.75%) survival to hospital discharge. They also noted a large proportion of the survivors suffered hypoxic or asphyxial injuries, whereas those patients with hypovolaemic cardiac arrest did not survive.


OBJECTIVE:To determine the epidemiology and survival of pediatric out-of-hospital cardiac arrest (OHCA) secondary to trauma.

METHODS:The CanAm Pediatric Cardiac Arrest Study Group is a collaboration of researchers in the United States and Canada sharing a common goal to improve survival outcomes for pediatric cardiac arrest. This was a prospective, multicenter, observational study. Twelve months of consecutive data were collected from emergency medical services (EMS), fire, and inpatient records from 2000 to 2003 for all OHCAs secondary to trauma in patients aged ≤18 years in 36 urban and suburban communities supporting advanced life support (ALS) programs. Eligible patients were apneic and pulseless and received chest compressions in the field. The primary outcome was survival to discharge. Secondary measures included return of spontaneous circulation (ROSC), survival to hospital admission, and 24-hour survival.

RESULTS:The study included 123 patients. The median patient age was 7.3 years (interquartile range [IQR] 6.0-17.0). The patient population was 78.1% male and 59.0% African American, 20.5% Hispanic, and 15.7% white. Most cardiac arrests occurred in residential (47.1%) or street/highway (37.2%) locations. Initial recorded rhythms were asystole (59.3%), pulseless electrical activity (29.1%), and ventricular fibrillation/tachycardia (3.5%). The majority of cardiac arrests were unwitnessed (49.5%), and less than 20% of patients received chest compressions by bystanders. The median (IQR) call-to-arrival interval was 4.9 (3.1-6.5) minutes and the on-scene interval was 12.3 (8.4-18.3) minutes. Blunt and penetrating traumas were the most common mechanisms (34.2% and 25.2%, respectively) and were associated with poor survival to discharge (2.4% and 6.5%, respectively). For all OHCA patients, 19.5% experienced ROSC in the field, 9.8% survived the first 24 hours, and 5.7% survived to discharge. Survivors had triple the rate of bystander cardiopulmonary resuscitation (CPR) than nonsurvivors (42.9% vs. 15.2%). Unlike patients sustaining blunt trauma or strangulation/hanging, most post-cardiac arrest patients who survived the first 24 hours after penetrating trauma or drowning were discharged alive. Drowning (17.1% of cardiac arrests) had the highest survival-to-discharge rate (19.1%).

CONCLUSIONS:The overall survival rate for OHCA in children after trauma was low, but some trauma mechanisms are associated with better survival rates than others. Most OHCA in children is preventable, and education and prevention strategies should focus on those overrepresented populations and high-risk mechanisms to improve mortality.

1. Epidemiology of out-of hospital pediatric cardiac arrest due to trauma
Prehosp Emerg Care, 2012 vol. 16 (2) pp. 230-236
2. Outcome from paediatric cardiac arrest associated with trauma
Resuscitation. 2007 Oct;75(1):29-34

Helicopters and improved trauma survival

A large retrospective study has shown increased trauma survival associated with helicopter transport. The reason is unclear and may be multifactorial: faster speed, greater access to trauma centres, higher exposure of crews to trauma, different crew skill mix and so on are all possibilities.
An interview of less than five minutes with one of the authors describes the study:


Context Helicopter emergency medical services and their possible effect on outcomes for traumatically injured patients remain a subject of debate. Because helicopter services are a limited and expensive resource, a methodologically rigorous investigation of its effectiveness compared with ground emergency medical services is warranted.

Objective To assess the association between the use of helicopter vs ground services and survival among adults with serious traumatic injuries.

Design, Setting, and Participants Retrospective cohort study involving 223 475 patients older than 15 years, having an injury severity score higher than 15, and sustaining blunt or penetrating trauma that required transport to US level I or II trauma centers and whose data were recorded in the 2007-2009 versions of the American College of Surgeons National Trauma Data Bank.

Interventions Transport by helicopter or ground emergency services to level I or level II trauma centres.

Main Outcome Measures Survival to hospital discharge and discharge disposition.

Results A total of 61 909 patients were transported by helicopter and 161 566 patients were transported by ground. Overall, 7813 patients (12.6%) transported by helicopter died compared with 17 775 patients (11%) transported by ground services. Before propensity score matching, patients transported by helicopter to level I and level II trauma centers had higher Injury Severity Scores. In the propensity score–matched multivariable regression model, for patients transported to level I trauma centers, helicopter transport was associated with an improved odds of survival compared with ground transport (odds ratio [OR], 1.16; 95% CI, 1.14-1.17; P < .001; absolute risk reduction [ARR], 1.5%). For patients transported to level II trauma centers, helicopter transport was associated with an improved odds of survival (OR, 1.15; 95% CI, 1.13-1.17; P < .001; ARR, 1.4%). A greater proportion (18.2%) of those transported to level I trauma centers by helicopter were discharged to rehabilitation compared with 12.7% transported by ground services (P < .001), and 9.3% transported by helicopter were discharged to intermediate facilities compared with 6.5% by ground services (P < .001). Fewer patients transported by helicopter left level II trauma centers against medical advice (0.5% vs 1.0%, P < .001).

Conclusion Among patients with major trauma admitted to level I or level II trauma centers, transport by helicopter compared with ground services was associated with improved survival to hospital discharge after controlling for multiple known confounders.


Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma

JAMA, April 18, 2012—Vol 307, No. 15 1602-10 Full Text

Epinephrine in cardiac arrest reanalysed

A post hoc reanalysis was performed on a 2009 JAMA paper comparing patients randomised to receive or not receive prehospital drugs and iv access for cardiac arrest.
This was done to evaulate the effect of adrenaline/epinephrine. The reason for the reanalysis was that in the original intention-to-treat analysis, some of the following issues may have influenced the results:

  • Some patients randomised to adrenaline never received it as they had ROSC before the drug could be given, thus yielding a selection bias with the most easily resuscitated patients in the post hoc no-adrenaline group
  • At least 1 of 5 patients randomised to receive IV access and drugs did not receive adrenaline as it was regarded futile or it was impossible to gain intravenous access
  • 1 of 10 patients randomised to not receive drugs received adrenaline after they had regained spontaneous circulation for > 5 min.

The purpose of this post hoc analysis on the RCT data was to compare outcomes for patients actually receiving adrenaline to those not receiving adrenaline.
The actual use of adrenaline was associated with increased short-term survival, but with 48% less survival to hospital discharge. The improved survival to hospital admission is consistent with the results of a recent Australia study, and the negative association with longer term survival is similar to a multivariate analysis of observational Swedish registry data where patients receiving adrenaline were 57% less likely to be alive after one month.
Yet more evidence that we haven’t found any drugs proven to improve survival in cardiac arrest. At least not until the human studies on sodium nitroprusside come out?
I bet some of you are still going to be giving the epi exactly every four minutes though.
**Update: see Prehospital Epinephrine Use and Survival Among Patients With Out-of-Hospital Cardiac Arrest – more prospective data from Japan, this time showing epinephrine improves prehospital ROSC, but decreases chance of survival and good functional outcomes 1 month after the event.**


PURPOSE OF THE STUDY: IV line insertion and drugs did not affect long-term survival in an out-of-hospital cardiac arrest (OHCA) randomized clinical trial (RCT). In a previous large registry study adrenaline was negatively associated with survival from OHCA. The present post hoc analysis on the RCT data compares outcomes for patients actually receiving adrenaline to those not receiving adrenaline.

MATERIALS AND METHODS: : Patients from a RCT performed May 2003 to April 2008 were included. Three patients from the original intention-to-treat analysis were excluded due to insufficient documentation of adrenaline administration. Quality of cardiopulmonary resuscitation (CPR) and clinical outcomes were compared.

RESULTS: Clinical characteristics were similar and CPR quality comparable and within guideline recommendations for 367 patients receiving adrenaline and 481 patients not receiving adrenaline. Odds ratio (OR) for being admitted to hospital, being discharged from hospital and surviving with favourable neurological outcome for the adrenaline vs. no-adrenaline group was 2.5 (CI 1.9, 3.4), 0.5 (CI 0.3, 0.8) and 0.4 (CI 0.2, 0.7), respectively. Ventricular fibrillation, response interval, witnessed arrest, gender, age and endotracheal intubation were confounders in multivariate logistic regression analysis. OR for survival for adrenaline vs. no-adrenaline adjusted for confounders was 0.52 (95% CI: 0.29, 0.92).

CONCLUSION: Receiving adrenaline was associated with improved short-term survival, but decreased survival to hospital discharge and survival with favourable neurological outcome after OHCA. This post hoc survival analysis is in contrast to the previous intention-to-treat analysis of the same data, but agrees with previous non-randomized registry data. This shows limitations of non-randomized or non-intention-to-treat analyses.

Outcome when adrenaline (epinephrine) was actually given vs. not given – post hoc analysis of a randomized clinical trial
Resuscitation. 2012 Mar;83(3):327-32