A French study, large by hyperbaric oxygen trial standards, did not confirm that hyperbaric oxygen therapy improves recovery from pure CO poisoning. In addition, in comatose patients, repeating hyperbaric oxygen therapy resulted in worse outcomes compared to one session. I don't care if it doesn't work - something looking like a retro-sci-fi time machine is COOL.
INTRODUCTION: Although hyperbaric oxygen therapy (HBO) is broadly used for carbon monoxide (CO) poisoning, its efficacy and practical modalities remain controversial. OBJECTIVES: To assess HBO in patients poisoned with CO. DESIGN: Two prospective randomized trial on two parallel groups. SETTING: Critical Care Unit, Raymond Poincaré Hospital, Garches, France. SUBJECTS: Three hundred eighty-five patients with acute domestic CO poisoning. INTERVENTION: Patients with transient loss of consciousness (trial A, n = 179) were randomized to either 6 h of normobaric oxygen therapy (NBO; arm A0, n = 86) or 4 h of NBO plus one HBO session (arm A1, n = 93). Patients with initial coma (trial B, n = 206) were randomized to either 4 h of NBO plus one HBO session (arm B1, n = 101) or 4 h of NBO plus two 2 HBO sessions (arm B2, n = 105). PRIMARY ENDPOINT: Proportion of patients with complete recovery at 1 month. RESULTS: In trial A, there was no evidence for a difference in 1-month complete recovery rates with and without HBO [58% compared to 61%; unadjusted odds ratio, 0.90 (95% CI, 0.47-1.71)]. In trial B, complete recovery rates were significantly lower with two than with one HBO session [47% compared to 68%; unadjusted odds ratio, 0.42 (CI, 0.23-0.79)]. CONCLUSION: In patients with transient loss of consciousness, there was no evidence of superiority of HBO over NBO. In comatose patients, two HBO sessions were associated with worse outcomes than one HBO session.
Most data regarding RSI complication rates traditionally come from the operating room setting. I and my colleagues made a small attempt address this in the UK with a publication in 2004. The latest, much larger, study on the subject from Michigan shows a 10% rate of difficult intubations and a 4.2% rate of airway complications.
BACKGROUND: There are limited outcome data regarding emergent nonoperative intubation. The current study was undertaken with a large observational dataset to evaluate the incidence of difficult intubation and complication rates and to determine predictors of complications in this setting. METHODS: Adult nonoperating room emergent intubations at our tertiary care institution from December 5, 2001 to July 6, 2009 were reviewed. Prospectively defined data points included time of day, location, attending physician presence, number of attempts, direct laryngoscopy view, adjuvant use, medications, and complications. At our institution, a senior resident with at least 24 months of anesthesia training is the first responder for all emergent airway requests. The primary outcome was a composite airway complication variable that included aspiration, esophageal intubation, dental injury, or pneumothorax. RESULTS: A total of 3,423 emergent nonoperating room airway management cases were identified. The incidence of difficult intubation was 10.3%. Complications occurred in 4.2%: aspiration, 2.8%; esophageal intubation, 1.3%; dental injury, 0.2%; and pneumothorax, 0.1%. A bougie introducer was used in 12.4% of cases. Among 2,284 intubations performed by residents, independent predictors of the composite complication outcome were as follows: three or more intubation attempts (odds ratio, 6.7; 95% CI, 3.2-14.2), grade III or IV view (odds ratio, 1.9; 95% CI, 1.1-3.5), general care floor location (odds ratio, 1.9; 95% CI, 1.2-3.0), and emergency department location (odds ratio, 4.7; 95% CI, 1.1-20.4). CONCLUSIONS: During emergent nonoperative intubation, specific clinical situations are associated with an increased risk of airway complication and may provide a starting point for allocation of experienced first responders.
NAP4 is here! Is that good? Yes. Why? Because it’s the long awaited 4th National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society in the United Kingdom – a multi-phase national survey that was designed to answer the questions;
What types of airway device are used during anaesthesia and how often?
How often do major complications, leading to serious harm, occur in association with airway management in anaesthesia, in the intensive care units and in the emergency departments of the UK?
What is the nature of these events and what can we learn from them, in order to reduce their frequency and consequences?
The Audit identified 33 deaths and 46 cases of death or brain damage as a result of airway complications during anaesthesia, in ICU and the emergency department over a one year period in the four countries of the United Kingdom.
Some major findings include:
Poor planning contributed to poor airway outcomes – often a failure to plan for failure.
The project identified numerous cases where awake fibreoptic intubation (afoi) was indicated but was not used. A lack of suitable equipment was prevalent on ICU.
Problems arose when difficult intubation was managed by multiple repeat attempts at intubation.
Events were reported where supraglottic airway devices (SAD) were used inappropriately. Patients who were markedly obese, often managed by junior trainees, were prominent in the group of patients who sustained non-aspiration events. Numerous cases of aspiration occurred during use of a first generation SAD in patients who had multiple risk factors for aspiration and in several in whom the aspiration risk was so high that rapid sequence induction, should have been used.
The proportion of obese patients in case reports submitted to NAP4 was twice that in the general population
When rescue techniques were necessary in obese patient they failed more often than in the non-obese.
There was a high failure rate of emergency cannula cricothyroidotomy, approximately 60%. There were numerous mechanisms of failure and the root cause was not determined; equipment, training, insertion technique and ventilation technique all led to failure. In contrast a surgical technique for emergency surgical airway was almost universally successful. The technique of cannula cricothyroidotomy needs to be taught and performed to the highest standards to maximise the chances of success, but the possibility that it is intrinsically inferior to a surgical technique should also be considered. Anaesthetists should be trained to perform a surgical airway.
failure to correctly interpret a capnograph trace led to several oesophageal intubations going unrecognised in anaesthesia. A flat capnograph trace indicates lack of ventilation of the lungs: the tube is either not in the trachea or the airway is completely obstructed. Active efforts should be taken to positively exclude these diagnoses. This applies equally in cardiac arrest as CPR leads to an attenuated but visible expired carbon dioxide trace.
at least one in four major airway events reported to NAP4 was from ICU or the emergency department. The outcome of these events was more likely to lead to permanent harm or death than events in anaesthesia. Analysis of the cases identified gaps in care that included: poor identification of at-risk patients, poor or incomplete planning, inadequate provision of skilled staff and equipment to manage these events successfully, delayed recognition of events and failed rescue due to lack of or failure of interpretation of capnography. The project findings suggest avoidable deaths due to airway complications occur in ICU and the emergency department.
ICU
failure to use capnography in ventilated patients likely contributed to more than 70% of ICU related deaths. Increasing use of capnography on ICU is the single change with the greatest potential to prevent deaths such as those reported to NAP4.
Displaced tracheostomy, and to a lesser extent displaced tracheal tubes, were the greatest cause of major morbidity and mortality in ICU. Obese patients were at particular risk of such events and adverse outcome from them. All patients on ICU should have an emergency re-intubation plan.
ED
Most events in the emergency department were complications of rapid sequence induction. This was also an area of concern in ICU. RSI outside the operating theatre requires the same level of equipment and support as is needed during anaesthesia. This includes capnography and access for equipment needed to manage routine and difficult airway problems.
Body temperature does not necessarily reflect brain temperature
Low brain temperature was independently associated with a worse outcome in a recent study
Brain temperature within the range of 36.5°C to 38°C was associated with a lower probability of death in this study
There are no randomised studies on which to base the practice of aggressive cooling of febrile patients with traumatic brain injury
There are few prospective studies reporting the effect of spontaneous temperature changes on outcome after severe traumatic brain injury (TBI). Where studies have been conducted, results are based on systemic rather than brain temperature per se. However, body temperature is not a reliable surrogate for brain temperature. Consequently, the effect of brain temperature changes on outcome in the acute phase after TBI is not clear. Continuous intraparenchymal brain temperature was measured in consecutive admissions of severe TBI patients during the course of the first 5 days of admission to the intensive care unit (ICU). Patients received minimal temperature altering therapy during their ICU stay. Logistic regression was used to explore the relationship between the initial, the 24-h mean, and the 48-h mean brain temperature with outcome for mortality at 30 days and outcome at 3 months. Multifactorial analysis was performed to account for potential confounders. At the 24-h time point, brain temperature within the range of 36.5°C to 38°C was associated with a lower probability of death (10-20%). Brain temperature outside of this range was associated with a higher probability of death and poor 3-month neurological outcome. After adjusting for other predictors of outcome, low brain temperature was independently associated with a worse outcome. Lower brain temperatures (below 37°C) are independently associated with a higher mortality rate after severe TBI. The results suggest that, contrary to current opinion, temperatures within the normal to moderate fever range during the acute post-TBI period do not impose an additional risk for a poor outcome after severe TBI.
The effect of spontaneous alterations in brain temperature on outcome: a prospective observational cohort study in patients with severe traumatic brain injury.
J Neurotrauma. 2010 Dec;27(12):2157-64
Doctors from Britain’s most established major trauma centre – the Royal London Hospital – have produced mortality data over a four year period of trauma team activations.
Introduction Trauma data collection by UK hospitals is non-mandatory and data regarding trauma mortality are deficient. Our aim was to provide a contemporary description of mortality in a maturing trauma-receiving hospital serving an inner-city population. Methods A prospectively maintained registry was analysed for demographics; injury mechanism; and time, location and cause of death in trauma patients admitted via the Emergency Department between 2004 and 2008. Results 4986 trauma team activations yielded 4243 complete cases. The number of patients rose from 784 in 2004-2005 to 1400 in 2007/8. 302 (7%) of these died. All-cause mortality fell from 8.8% to 5.8% (p=0.0075). Blunt trauma (predominantly falls from height and road traffic collisions) accounted for 79% of admissions but 87% of mortality. Penetrating trauma accounted for 21% of admissions and 13% of mortality. Most penetrating injury deaths were from stabbing injury (31/40) as opposed to gunshot wounds (8/40). The biggest cause of death was central nervous system injury (47.7%) followed by haemorrhage (26.2%). Penetrating injury death was associated with marked shock and acidosis compared to blunt mechanisms-mean (SD) admission systolic blood pressure 25.4 (45.7) versus 105.5 (60.5) mm Hg; mean (SD) base excess -21.84 (7.2) versus 9.71 (8.45) mmol, respectively. No classical trimodal distribution of death was observed. Conclusion Despite current focus on death from knife and gun crime, the vast majority of trauma mortality arises from blunt aetiology. Maturation of our systems of care has been associated with a drop in mortality as institutional trauma volumes increase and clinical infrastructure develops.
A review of extracorporeal life support for out-of-hospital cardiac arrest was undertaken, looking specifically at studies published in the Japanese literature. The abstract is shown below. Based on these findings, inclusion criteria for a multicentre, prospective non-randomised cohort study were established. The ‘SAVE-J: Study of advanced life support for ventricular fibrillation with extracorporeal circulation in Japan’ was launched and has been ongoing since October 2008 to compare the proportion of patients with a favourable neurological outcome by intention-to-treat in an ECPR group with a non-ECPR group. Inclusion criteria for this new study are:
shockable rhythm on the initial ECG
cardiac arrest on arrival at hospital regardless of the presence of recovery of spontaneous circulation before arrival
arrival at hospital within 45 min of the call for an ambulance or cardiac arrest;
cardiac arrest remaining for more than 15 min after arrival at hospital.
I look forward to seeing the results SAVE-J. If you wish to read more, you can check out the SAVE-J study website.
AIM: Although favourable outcomes in patients receiving extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest have been frequently reported in Japanese journals since the late 1980s, there has been no meta-analysis of ECPR in Japan. This study reviewed and analysed all previous studies in Japan to clarify the survival rate of patients receiving ECPR. MATERIAL AND METHODS: Case reports, case series and abstracts of scientific meetings of ECPR for out-of-hospital cardiac arrest written in Japanese between 1983 and 2008 were collected. The characteristics and outcomes of patients were investigated, and the influence of publication bias of the case-series studies was examined by the funnel-plot method. RESULTS: There were 1282 out-of-hospital cardiac arrest patients, who received ECPR in 105 reports during the period. The survival rate at discharge given for 516 cases was 26.7±1.4%. The funnel plot presented the relationship between the number of cases of each report and the survival rate at discharge as the reverse-funnel type that centred on the average survival rate. In-depth review of 139 cases found that the rates of good recovery, mild disability, severe disability, vegetative state, death at hospital discharge and non-recorded in all cases were 48.2%, 2.9%, 2.2%, 2.9%, 37.4% and 6.4%, respectively. CONCLUSIONS: Based on the results of previous reports with low publication bias in Japan, ECPR appears to provide a higher survival rate with excellent neurological outcome in patients with out-of-hospital cardiac arrest.
Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: a review of the Japanese literature Resuscitation. 2011 Jan;82(1):10-4
ABCD2 is recommended to stratify the risk of stroke in patients presenting to the ED with TIA symptoms. In some centres this is used to differentiate those that need to be admitted for further evaluation and treatment from those that can be followed up in the outpatient setting. A recent study showed that if a detailed work up was done in the ED on all TIA patients (followed by appropriate intervention), the ABCD2 score did not predict adverse outcomes, which were lower in this cohort than in the original ABCD2 cohort.
STUDY OBJECTIVE: We study the incremental value of the ABCD2 score in predicting short-term risk of ischemic stroke after thorough emergency department (ED) evaluation of transient ischemic attack. METHODS: This was a prospective observational study of consecutive patients presenting to the ED with a transient ischemic attack. Patients underwent a full ED evaluation, including central nervous system and carotid artery imaging, after which ABCD2 scores and risk category were assigned. We evaluated correlations between risk categories and occurrence of subsequent ischemic stroke at 7 and 90 days. RESULTS: The cohort consisted of 637 patients (47% women; mean age 73 years; SD 13 years). There were 15 strokes within 90 days after the index transient ischemic attack. At 7 days, the rate of stroke according to ABCD2 category in our cohort was 1.1% in the low-risk group, 0.3% in the intermediate-risk group, and 2.7% in the high-risk group. At 90 days, the rate of stroke in our ED cohort was 2.1% in the low-risk group, 2.1% in the intermediate-risk group, and 3.6% in the high-risk group. There was no relationship between ABCD2 score at presentation and subsequent stroke after transient ischemic attack at 7 or 90 days. CONCLUSION: The ABCD2 score did not add incremental value beyond an ED evaluation that includes central nervous system and carotid artery imaging in the ability to risk-stratify patients with transient ischemic attack in our cohort. Practice approaches that include brain and carotid artery imaging do not benefit by the incremental addition of the ABCD2 score. In this population of transient ischemic attack patients, selected by emergency physicians for a rapid ED-based outpatient protocol that included early carotid imaging and treatment when appropriate, the rate of stroke was independent of ABCD2 stratification.
An Assessment of the Incremental Value of the ABCD2 Score in the Emergency Department Evaluation of Transient Ischemic Attack Ann Emerg Med. 2011 Jan;57(1):46-51
Eighteen trauma centers contributed ED resuscitative thoracotomy data to a study that commenced enrollment in January 2003. During the ensuing 6 years, 56 patients survived to hospital discharge. Mean age was 31.3; the youngest was a 15-year-old female and the oldest was a 64-year-old male; 93% were male. Injury mechanism was stab wound (SW) in 30 patients, gunshot wound (GSW) in 21 patients, and blunt trauma in 5 patients.
The most common injury was a SW to a ventricle (n =17), accounting for 30% of survivors, followed by a GSW to the lung (n =9) in 16%. There were five survivors (9%) after blunt trauma. Two patients were revived with isolated head trauma who had deteriorated from extensive hemorrhage, one from an open blunt skull fracture (who had 5 minutes of prehospital CPR and left the hospital neurologically intact.) and the other from SWs to the scalp. Two patients also survived with isolated neck injuries: a SW to the vertebral artery and a GSW to the internal carotid artery.
34% of survivors underwent prehospital CPR. Corroborating the reported duration of CPR, the mean base deficit (BD) was 23.3 mequiv/L (range, 14–32 mequiv/L) in those undergoing CPR >5 minutes. In the SW group, the duration was 2 minutes to 10 minutes; the sole survivor after 10 minutes had ventricular wounds with pericardial tamponade. In the GSW group, prehospital CPR was from 1 minute to 15 minutes. The only patient surviving with 15 minutes of CPR also had a ventricular wound with pericardial tamponade but had a moderate neurologic deficit at discharge. In the blunt group, CPR ranged from 3 minutes to 9 minutes; the survivor with 9 minutes of CPR had an atrial rupture with pericardial tamponade.
Seven patients survived with asystole at ED arrival; of significance, all patients had pericardial tamponade. At the time of hospital discharge, three of these patients (43%) had functional neurologic recovery.
The authors state: ‘most recent edition of the ACSCOT advanced trauma life support manual continues to declare “patients sustaining blunt injuries who arrive pulseless but with myocardial electrical activity are not candidates for resuscitative thoracotomy”. But these statements are not congruent with most of the recent literature.‘ Recommended Limits of Resuscitative Thoracotomy in the ED
BACKGROUND: Since the promulgation of emergency department (ED) thoracotomy >40 years ago, there has been an ongoing search to define when this heroic resuscitative effort is futile. In this era of health care reform, generation of accurate data is imperative for developing patient care guidelines. The purpose of this prospective multicenter study was to identify injury patterns and physiologic profiles at ED arrival that are compatible with survival. METHODS: Eighteen institutions representing the Western Trauma Association commenced enrollment in January 2003; data were collected prospectively. RESULTS: During the ensuing 6 years, 56 patients survived to hospital discharge. Mean age was 31.3 years (15-64 years), and 93% were male. As expected, survival was predominant in those with thoracic injuries (77%), followed by abdomen (9%), extremity (7%), neck (4%), and head (4%). The most common injury was a ventricular stab wound (30%), followed by a gunshot wound to the lung (16%); 9% of survivors sustained blunt trauma, 34% underwent prehospital cardiopulmonary resuscitation (CPR), and the presenting base deficit was >25 mequiv/L in 18%. Relevant to futile care, there were survivors of blunt torso injuries with CPR up to 9 minutes and penetrating torso wounds up to 15 minutes. Asystole was documented at ED arrival in seven patients (12%); all these patients had pericardial tamponade and three (43%) had good functional neurologic recovery at hospital discharge. CONCLUSION: Resuscitative thoracotomy in the ED can be considered futile care when (a) prehospital CPR exceeds 10 minutes after blunt trauma without a response, (b) prehospital CPR exceeds 15 minutes after penetrating trauma without a response, and (c) asystole is the presenting rhythm and there is no pericardial tamponade. Defining the Limits of Resuscitative Emergency Department Thoracotomy: A Contemporary Western Trauma Association Perspective J Trauma. 2011 Feb;70(2):334-339.
More evidence that cooling the hypoxic neonatal brain improves outcomes…. OBJECTIVE Mild hypothermia after perinatal hypoxic-ischemic encephalopathy (HIE) reduces neurologic sequelae without significant adverse effects, but studies are needed to determine the most-efficacious methods. METHODS In the neo.nEURO.network trial, term neonates with clinical and electrophysiological evidence of HIE were assigned randomly to either a control group, with a rectal temperature of 37°C (range: 36.5–37.5°C), or a hypothermia group, cooled and maintained at a rectal temperature of 33.5°C (range: 33–34°C) with a cooling blanket for 72 hours, followed by slow rewarming. All infants received morphine (0.1 mg/kg) every 4 hours or an equivalent dose of fentanyl. Neurodevelopmental outcomes were assessed at the age of 18 to 21 months. The primary outcome was death or severe disability. RESULTS A total of 129 newborn infants were enrolled, and 111 infants were evaluated at 18 to 21 months (53 in the hypothermia group and 58 in the normothermia group). The rates of death or severe disability were 51% in the hypothermia group and 83% in the normothermia group (P = .001; odds ratio: 0.21 [95% confidence interval [CI]: 0.09–0.54]; number needed to treat: 4 [95% CI: 3–9]). Hypothermia also had a statistically significant protective effect in the group with severe HIE (n = 77; P = .005; odds ratio: 0.17 [95% CI: 0.05–0.57]). Rates of adverse events during the intervention were similar in the 2 groups except for fewer clinical seizures in the hypothermia group. CONCLUSION Systemic hypothermia in the neo.nEURO.network trial showed a strong neuroprotective effect and was effective in the severe HIE group. Systemic Hypothermia After Neonatal Encephalopathy: Outcomes of neo.nEURO.network RCT Pediatrics. 2010 Oct;126(4):e771-8
Update Dec 2014:
An RCT to determine if longer duration cooling (120 hours), deeper cooling (32.0°C), or both are superior to cooling at 33.5°C for 72 hours in neonates who are full-term with moderate or severe hypoxic ischemic encephalopathy.
Longer cooling, deeper cooling, or both compared with hypothermia at 33.5°C for 72 hours did not reduce NICU death. Small study. Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial JAMA. 2014 Dec 24;312(24):2629-39
I don’t have full text access to the Journal Pediatrics, so I’m not sure what I make of this small randomised trial comparing two types of blood pressure monitoring during paediatric transport: BACKGROUND The “golden-hour” concept has led to emphasis on speed of patient delivery during pediatric interfacility transport. Timely intervention, in addition to enhanced monitoring during transport, is the key to improved outcomes in critically ill patients. Taking the ICU to the patient may be more beneficial than rapid delivery to a tertiary care center. METHODS The Improved Monitoring During Pediatric Interfacility Transport trial was the first randomized controlled trial in the out-of-hospital pediatric transport environment. It was designed to determine the impact of improved blood pressure monitoring during pediatric interfacility transport and the effect on clinical outcomes in patients with systemic inflammatory response syndrome and moderate-to-severe head trauma. Patients in the control group had their blood pressure monitored intermittently with an oscillometric device; those in the intervention group had their blood pressure monitored every 12 to 15 cardiac contractions with a near-continuous, noninvasive device. RESULTS Between May 2006 and June 2007, 1995, consecutive transport patients were screened, and 94 were enrolled (48 control, 46 intervention). Patients in the intervention group received more intravenous fluid (19.8 ± 22.2 vs 9.9 ± 9.9 mL/kg; P = .01), had a shorter hospital stay (6.8 ± 7.8 vs 10.9 ± 13.4 days; P = .04), and had less organ dysfunction (18 of 206 vs 32 of 202 PICU days; P = .03). CONCLUSIONS Improved monitoring during pediatric transport has the potential to improve outcomes of critically ill children. Clinical trials, including randomized controlled trials, can be accomplished during pediatric transport. Future studies should evaluate optimal equipment, protocols, procedures, and interventions during pediatric transport, aimed at improving the clinical and functional outcomes of critically ill patients. Enhanced Monitoring Improves Pediatric Transport Outcomes: A Randomized Controlled Trial Pediatrics. 2011 Jan;127(1):42-8