Tag Archives: Trauma

Leadership & experience count in trauma resuscitation

These findings shouldn’t be a surprise – and the authors acknowledge a number of methodological weaknesses in what is essentially a pilot study – but the conclusions are worth reminding people about.


INTRODUCTION: Leadership plays a key role in trauma team management and might affect the efficiency of patient care. Our hypothesis was that a positive relationship exists between the trauma team members’ perception of leadership and the efficiency of the injured patient’s initial evaluation.

METHODS: We conducted a prospective observational study evaluating trauma attending leadership (TAL) over 5 months at a level 1 trauma center. After the completion of patient care, trauma team members evaluated the TAL’s ability using a modified Campbell Leadership Descriptor Survey tool. Scores ranged from 18 (ineffective leader) to 72 (perfect score). Clinical efficiency was measured prospectively by recording the time needed to complete an advanced trauma life support (ATLS)-directed resuscitation. Assessment times across Leadership score groups were compared using Kruskal-Wallis and Mann-Whitney tests (p < 0.05, statistically significant).

RESULTS: Seven attending physicians were included with a postfellowship experience ranging from ≤1 to 11 years. The average leadership score was 59.8 (range, 27-72). Leadership scores were divided into 3 groups post facto: low (18-45), medium (46-67), and high (68-72). The teams directed by surgeons with low scores took significantly longer than teams directed by surgeons with high scores to complete the secondary survey (14 ± 4 minutes in contrast to 11 ± 2 minutes, p < 0.009) and to transport the patient for CT evaluation (19 ± 5 minutes in contrast to 14 ± 4 minutes; p < 0.001). Attending surgeon experience also affected clinical efficiency with teams directed by less experienced surgeons taking significantly longer to complete the primary survey (p < 0.05).

CONCLUSION: The trauma team’s perception of leadership is associated positively with clinical efficiency. As such, more formal leadership training could potentially improve patient care and should be included in surgical education.

Trauma leadership: does perception drive reality?
J Surg Educ. 2012 Mar-Apr;69(2):236-40

Lung ultrasound for pneumothorax by paramedics

This UK study showed that paramedics could successfully acquire and identify lung ultrasound images after a two day course. The course covered the identification and management of patients who present with serious thoracic injury, with a specific focus on the use of thoracic ultrasound during early prehospital assessment. Standard 2D images for pleural sliding and comet tails and M-Mode for the ‘seashore sign’ were acquired, and colour Doppler was also used to assist in the identification of pleural sliding.


Objective This trial investigated whether advanced paramedics from a UK regional ambulance service have the ability to acquire and interpret diagnostic quality ultrasound images following a 2-day programme of education and training covering the fundamental aspects of lung ultrasound.

Method The participants were tested using a two-part examination; assessing both their theoretical understanding of image interpretation and their practical ability to acquire diagnostic quality ultrasound images. The results obtained were subsequently compared with those obtained from expert physician sonographers.

Results The advanced paramedics demonstrated an overall accuracy in identifying the presence or absence of pneumothorax in M-mode clips of 0.94 (CI 0.86 to 0.99), compared with the experts who achieved 0.93 (CI 0.67 to 1.0). In two-dimensional mode, the advanced paramedics demonstrated an overall accuracy of 0.78 (CI 0.72 to 0.83), compared with the experts who achieved 0.76 (CI 0.62 to 0.86). In total, the advanced paramedics demonstrated an overall accuracy at identifying the presence or absence of pneumothorax in prerecorded video clip images of 0.82 (CI 0.77 to 0.86), in comparison
with the expert users of 0.80 (CI 0.68 to 0.88). All of the advanced paramedics passed the objective structured clinical examination and achieved a practical standard considered by the examiners to be equivalent to that which would be expected from candidates enrolled on the thoracic module of the College of Emergency Medicine level 2 ultrasound programme.

Conclusion This trial demonstrated that ultrasound-naive practitioners can achieve an acceptable standard of competency in a simulated environment in a relatively short period of time.

Acquisition and interpretation of focused diagnostic ultrasound images by ultrasound-naive advanced paramedics: trialling a PHUS education programme
Emerg Med J, 2012 vol. 29 (4) pp. 322-326

Out-of hospital traumatic paediatric cardiac arrest

This small study on traumatic arrests in children1 refutes the “100% mortality from traumatic arrest” dogma that people still spout and gives information on the mechanisms associated with survival: drowning and strangulation were associated with greater rates of survival to hospital admission compared with blunt, penetrating, and other traumas. Overall, drowning had the greatest rate of survival to discharge (19.1%).
I would like to know the injuries sustained in non-survivors, to determine whether they were potentially treatable. Strikingly, in the list of prehospital procedures performed, there were NO attempts at pleural decompression, something that is standard in traumatic arrest protocols in prehospital services were I have worked.
It is interesting to compare these results with those of the London HEMS team2, who for traumatic paediatric arrest achieved 19/80 (23.8%) survival to discharged from the emergency department and 7/80 (8.75%) survival to hospital discharge. They also noted a large proportion of the survivors suffered hypoxic or asphyxial injuries, whereas those patients with hypovolaemic cardiac arrest did not survive.


OBJECTIVE:To determine the epidemiology and survival of pediatric out-of-hospital cardiac arrest (OHCA) secondary to trauma.

METHODS:The CanAm Pediatric Cardiac Arrest Study Group is a collaboration of researchers in the United States and Canada sharing a common goal to improve survival outcomes for pediatric cardiac arrest. This was a prospective, multicenter, observational study. Twelve months of consecutive data were collected from emergency medical services (EMS), fire, and inpatient records from 2000 to 2003 for all OHCAs secondary to trauma in patients aged ≤18 years in 36 urban and suburban communities supporting advanced life support (ALS) programs. Eligible patients were apneic and pulseless and received chest compressions in the field. The primary outcome was survival to discharge. Secondary measures included return of spontaneous circulation (ROSC), survival to hospital admission, and 24-hour survival.

RESULTS:The study included 123 patients. The median patient age was 7.3 years (interquartile range [IQR] 6.0-17.0). The patient population was 78.1% male and 59.0% African American, 20.5% Hispanic, and 15.7% white. Most cardiac arrests occurred in residential (47.1%) or street/highway (37.2%) locations. Initial recorded rhythms were asystole (59.3%), pulseless electrical activity (29.1%), and ventricular fibrillation/tachycardia (3.5%). The majority of cardiac arrests were unwitnessed (49.5%), and less than 20% of patients received chest compressions by bystanders. The median (IQR) call-to-arrival interval was 4.9 (3.1-6.5) minutes and the on-scene interval was 12.3 (8.4-18.3) minutes. Blunt and penetrating traumas were the most common mechanisms (34.2% and 25.2%, respectively) and were associated with poor survival to discharge (2.4% and 6.5%, respectively). For all OHCA patients, 19.5% experienced ROSC in the field, 9.8% survived the first 24 hours, and 5.7% survived to discharge. Survivors had triple the rate of bystander cardiopulmonary resuscitation (CPR) than nonsurvivors (42.9% vs. 15.2%). Unlike patients sustaining blunt trauma or strangulation/hanging, most post-cardiac arrest patients who survived the first 24 hours after penetrating trauma or drowning were discharged alive. Drowning (17.1% of cardiac arrests) had the highest survival-to-discharge rate (19.1%).

CONCLUSIONS:The overall survival rate for OHCA in children after trauma was low, but some trauma mechanisms are associated with better survival rates than others. Most OHCA in children is preventable, and education and prevention strategies should focus on those overrepresented populations and high-risk mechanisms to improve mortality.

1. Epidemiology of out-of hospital pediatric cardiac arrest due to trauma
Prehosp Emerg Care, 2012 vol. 16 (2) pp. 230-236
2. Outcome from paediatric cardiac arrest associated with trauma
Resuscitation. 2007 Oct;75(1):29-34

Helicopters and improved trauma survival

A large retrospective study has shown increased trauma survival associated with helicopter transport. The reason is unclear and may be multifactorial: faster speed, greater access to trauma centres, higher exposure of crews to trauma, different crew skill mix and so on are all possibilities.
An interview of less than five minutes with one of the authors describes the study:


Context Helicopter emergency medical services and their possible effect on outcomes for traumatically injured patients remain a subject of debate. Because helicopter services are a limited and expensive resource, a methodologically rigorous investigation of its effectiveness compared with ground emergency medical services is warranted.

Objective To assess the association between the use of helicopter vs ground services and survival among adults with serious traumatic injuries.

Design, Setting, and Participants Retrospective cohort study involving 223 475 patients older than 15 years, having an injury severity score higher than 15, and sustaining blunt or penetrating trauma that required transport to US level I or II trauma centers and whose data were recorded in the 2007-2009 versions of the American College of Surgeons National Trauma Data Bank.

Interventions Transport by helicopter or ground emergency services to level I or level II trauma centres.

Main Outcome Measures Survival to hospital discharge and discharge disposition.

Results A total of 61 909 patients were transported by helicopter and 161 566 patients were transported by ground. Overall, 7813 patients (12.6%) transported by helicopter died compared with 17 775 patients (11%) transported by ground services. Before propensity score matching, patients transported by helicopter to level I and level II trauma centers had higher Injury Severity Scores. In the propensity score–matched multivariable regression model, for patients transported to level I trauma centers, helicopter transport was associated with an improved odds of survival compared with ground transport (odds ratio [OR], 1.16; 95% CI, 1.14-1.17; P < .001; absolute risk reduction [ARR], 1.5%). For patients transported to level II trauma centers, helicopter transport was associated with an improved odds of survival (OR, 1.15; 95% CI, 1.13-1.17; P < .001; ARR, 1.4%). A greater proportion (18.2%) of those transported to level I trauma centers by helicopter were discharged to rehabilitation compared with 12.7% transported by ground services (P < .001), and 9.3% transported by helicopter were discharged to intermediate facilities compared with 6.5% by ground services (P < .001). Fewer patients transported by helicopter left level II trauma centers against medical advice (0.5% vs 1.0%, P < .001).

Conclusion Among patients with major trauma admitted to level I or level II trauma centers, transport by helicopter compared with ground services was associated with improved survival to hospital discharge after controlling for multiple known confounders.


Association Between Helicopter vs Ground Emergency Medical Services and Survival for Adults With Major Trauma

JAMA, April 18, 2012—Vol 307, No. 15 1602-10 Full Text

Only when I laugh

A middle-aged martial arts enthusiast was training in Krav Maga, and participated in a high-contact punching and grappling sparring exercise in which his (younger, heavier) partner threw him to the ground and landed on him. During the throw the patient felt a ‘pop’ in his right side, and wondered whether he’d fractured a rib. During the subsequent five rounds against two additional sparring partners he noticed a clicking in the same area every time he was grappling, and pain in the right side when pushing up off the floor with his right arm. As a trained emergency physician, he assessed his own level of breathing comfort throughout the training to reassure himself he didn’t have a significant pneumothorax, and therefore elected to continue to fight in the interests of assessing his ability to defend himself while injured.
Pain on deep inspiration, coughing, and squeezing the chest suggested a fractured rib, so out of curiosity at work the next day he ultrasounded the area of maximum tenderness:

Discontinuity in cortex signifies rib fracture

Examination of the lung confirmed pleural sliding, B-lines, and ‘pearls on a string’, which excluded pneumothorax.
Sonography is more sensitive than radiography for the detection of rib fractures and may also detect costochondral junction injuries and disruption of costal cartilage1. This video from Hennepin County Medical Centre takes you through the simple procedure:

Although the management of rib fractures is no different from that of chest wall contusion, knowledge of the presence of fracture in this case is helpful to this patient in deciding when to return to the questionably sane ‘hobby’ of fighting bigger guys half his age.
The patient’s consent was obtained prior to the publication of the ultrasound image.

1. Sonography Compared with Radiography in Revealing Acute Rib Fracture
AJR Am J Roentgenol. 1999 Dec;173(6):1603-9.
Full text article
[EXPAND Click to read abstract]


OBJECTIVE: This study was undertaken to compare the sensitivities of sonography and radiography for revealing acute rib fracture.

SUBJECTS AND METHODS: Chest radiography and rib sonography were performed on 50 patients with suspected rib fractures. Sonography was performed with a 9- or 12-MHz linear transducer. Fractures were identified by a disruption of the anterior margin of the rib, costochondral junction, or costal cartilage. The incidence, location, and degree of displacement of fractures revealed by radiography and sonography were compared. Sonography was performed again after 3 weeks in 37 subjects.

RESULTS: At presentation, radiographs revealed eight rib fractures in six (12%) of 50 patients and sonography revealed 83 rib fractures in 39 (78%) of 50 patients. Seventy-four (89%) of the 83 sonographically detected fractures were located in the rib, four (5%) were located at the costochondral junction, and five (6%) in the costal cartilage. Repeated sonography after 3 weeks showed evidence of healing in all reexamined fractures. Combining sonography at presentation and after 3 weeks, 88% of subjects had sustained a fracture.

CONCLUSION: Sonography reveals more fractures than does radiography and will reveal fractures in most patients presenting with suspected rib fracture. Further scientific studies are needed to clarify the appropriate role for sonography in rib fracture detection.

[/EXPAND]

Simple emergency haemorrhage control

I had the honour of attending trauma rounds with leading South African trauma surgeons today at Groote Schuur Hospital in Cape Town. This was the first day of an intense week-long trauma education tour that I have organised for myself and three of my Sydney HEMS colleagues.
A technique for haemorrhage control in penetrating trauma is to place a Foley catheter (FC) in the wound and inflate the balloon to try to achieve compression of bleeding vascular structures. This has been life-saving in many cases and buys time to get the patient to a trauma or vascular surgeon or in some cases an interventional radiologist.

Catheter is knotted (black arrow) to occlude lumen. The wound is sutured around the catheter (white arrow).

First described by Gilroy and colleagues from Baragwanath Hospital in Johannesburg1, another, larger case series was subsequently reported by Cape Town’s Navsaria2, the Professor who conducted today’s trauma round I attended. In his paper he describes:


An 18- or 20-G FC was introduced into the bleeding neck wound. An attempt was made to follow the wound tract. The balloon was inflated with 5 ml of water or until resistance was felt. The FC was either clamped or knotted on itself to prevent bleeding through the lumen. The neck wound was sutured in two layers around the catheter. Continued bleeding around the catheter was an indication to proceed to surgery.

There were no deaths attributable to the use of FC balloon tamponade.
Prof. Navsaria describes the following algorithm for the subsequent investigation and management of these patients:

 I’ve been teaching this technique as an option in penetrating trauma for a few years but have never actually done it for real. Nice to finally see examples of its successful implementation by people who do this all the time. I’ve seen four patients with Foleys sticking out of their necks in the first 24 hours of being here.
1. Control of life-threatening haemorrhage from the neck: a new indication for balloon tamponade.
Injury. 1992;23(8):557-9
[EXPAND Click to read abstract]


We report the use of a Foley catheter, placed through the wound, to provide balloon tamponade of major bleeding from the neck and supraclavicular fossae. In 10 consecutive explorations for exsanguinating injury in these regions balloon tamponade was used eight times, and was judged to be fully effective in four patients, partly effective in one, and ineffective in three patients.

[/EXPAND]
2. Foley catheter balloon tamponade for life-threatening hemorrhage in penetrating neck trauma
World J Surg. 2006 Jul;30(7):1265-8
[EXPAND Click to read abstract]


BACKGROUND: Foley catheter (FC) balloon tamponade is a well-recognized technique employed to arrest hemorrhage from penetrating wounds. The aim of this study was to review our experience with this technique in penetrating neck wounds and to propose a management algorithm for patients with successful FC tamponade.

METHODS: A retrospective chart review (July 2004-June 2005 inclusive) was performed of patients identified from a prospectively collected penetrating neck injury computer database in whom FC balloon tamponade was used. The units’ policy for penetrating neck injuries is one of selective nonoperative management. All patients with successful FC tamponade underwent angiography. A venous injury was diagnosed if angiography was normal. Ancillary tests were performed as indicated. Removal of the FC was performed in the OR.

RESULTS: During the study period, 220 patients with penetrating neck injuries were admitted to our unit. Foley catheter balloon tamponade was used in 18 patients and was successful in 17 patients. Angiography was positive in 3 patients, all of whom underwent surgery. The FC was successfully removed in 13 patients at a mean of 72 (range 48-96) hours. One patient bled after removal of the catheter, mandating emergency surgery.

CONCLUSION: Foley catheter balloon tamponade remains a useful adjunct in the management of selective patients with penetrating, bleeding neck wounds.

[/EXPAND]

Body temperature in anaesthetised HEMS patients

This study raises an important issue – how do we keep patients with major trauma warm on the way to hospital? The authors from HEMS London identified mean temperatures in hospital of 35°C in patients who had been anaesthetised in the field, although only 38% of their patients had a temperature recorded on admission!
I emailed the author Audun Langhelle for practical information on the thermal protection package they use, who was most helpful in supplying the following information. Clicking on the link will take you to online supplements to the paper describing and illustrating their technique of prehospital rewarming.

Hi Cliff,

Thank you for your request and interest in our paper. Now fully repatriated to Norway, we’re currently using the medium sized UniqueResc warming blanket (Geratherm, Germany) at my base, together with the bubble wrap. In Norway, Garatherm is the only company which has been able to provide us with the necessary paper work showing that their product complies with the rather strict pan European rules and regulations, the EN 13718-1: Requirements for medical devices used in air ambulances in particular.
Working as HEMS doc with LAA 2008-2009, we played with and introduced the policy using Diemme’s (Italy)DM EMG >> http://emj.bmj.com/content/early/2010/10/19/emj.2009.086967/suppl/DC1, but I’m not sure what blanket they currently use.

Kind regards,

Audun

We reviewed this article in one of our Sydney HEMS Clinical Governance Days last year. One of our team presented a critical appraisal and if you’re interested the deadly PowerPoint slides are here:


Background Hypothermia at hospital admission has been found to independently predict increased mortality in trauma patients.

Objectives To establish if patients anaesthetised in the prehospital phase of care had a higher rate of hypothermia than non-anaesthetised patients on admission to hospital.

Methods Retrospective review of admission body temperature in 1292 consecutive prehospital trauma patients attended by a physician-led prehospital trauma service admitted to The Royal London Hospital between 1 July 2005 and 31 December 2008.

Results 38% had a temperature recorded on admission. There was a significant difference in body temperature between the anaesthetised group (N=207) and the non-anaesthetised group (N=287): mean (SD) 35.0 (2.1) vs 36.2 (1.0)°C, respectively (p <0.001). No significant seasonal body temperature variation was demonstrated.
Conclusion This study confirmed that patients anaesthetised in the prehospital phase of care had a significantly lower admission body temperature. This has led to a change in the author’s prehospital practice. Anaesthetised patients are now actively surface heated and have whole body insulation to prevent further heat loss in an attempt to conserve body temperature and improve outcome. This is an example of best in-hospital anaesthetic practice being carried out in the prehospital phase.

Body temperature of trauma patients on admission to hospital: a comparison of anaesthetised and non-anaesthetised patients
Emerg Med J. 2012 Mar;29(3):239-42
Full text link

The REAL Shocked Patient

I promised to put some summary notes on the site for those who attended my talk on ‘The REAL Shocked Patient’ for the Australian College of Ambulance Professionals on Tuesday 21st February 2012, so here they are:

Shocked patients are important – they comprise most of the ‘talk and die’ caseload that preoccupies pub conversations between emergency physicians
It’s easy to mistake these patients as less sick than, say, hypoxic ones, but oxygen delivery to the tissues doesn’t just depend on oxygen!

Here’s a dead wombat – someone in the audience knew a worrying amount about wombat anuses.

The 4 Hs and 4 Ts aren’t a very cognitively practical mnemonic for the causes of PEA arrest (which is an extreme form of hypotension)

I prefer the ‘3 plus 3’ rule, which breaks down the causes into three – volume, pump, and obstruction. Obstruction is further broken down into three causes, being tension pneumothorax, cardiac tamponade, and pulmonary embolism:

Let’s look at some cases of shock caused by volume deficit, pump falure, or one of the three causes of obstruction to the circulation:
 
Case 1: The hypotensive motorcyclist
His low back pain suggested pelvic fracture
Think of ‘blood on the floor and four more’ (chest, abdomen, pelvis/retroperitoneum, long bones) and consider non-bleeding causes such as neurogenic (spinal injury), tension pneumothorax, cardiac tamponade, and finally medical causes/iatrogenic (drug) causes.
Don’t underestimate the importance of pelvis and limb splinting as a haemorrhage control technique in blunt trauma
Ultrasound in flight made thoracic or abdominal bleeding very unlikely, and ruled out tamponade and pneumothorax
Although he was hypotensive, no fluids were given, as he was mentating normally and peripherally well perfused, with a radial pulse. If we gave fluid, we would titrate to the presence of a radial pulse (in blunt trauma) but we don’t want to ‘pop the clot’ by elevating the BP, or make him less able to form effective clots by diluting his blood with crystalloid.
Mortality in trauma sharply rises with systolic BP below 105-110, so recalibrate your definition of hypotension in terms of when you might be concerned, and which patients may benefit from triage to a trauma centre.
 
Case 2: The child crushed by a wall
Caution regarding lower limb infusions in patients with abdominal / pelvic injuries – the fluid may not get to the heart.

The classification of shock into four classes is crap. Never let the absence of a tachycardia reassure you.


Intraosseous is awesome, and EZ-IO has the best track record by far.
 
Case 3: The boy stabbed in the upper thigh
In penetrating limb trauma, prehospital options include pressure, elevation, tourniquet, and haemostatic dressings. Foley catheters have been used successfully in transition zones such as the neck or groin.
 
Case 4: Haematemesis
Should we apply the same principles of permissive hypotension to patients with ‘medical’ bleeding?
The Trendelenburg position doesn’t make a lot of sense – no need to head down the patient, although the act of elevating the legs may ‘autoinfuse’ a bolus of blood to the core circulation, and is recommended by some bodies as a first aid manoeuvre for hypotensive patients in the field prior to iv fluids.
 
Case 5: The overdose patient with a low blood pressure but otherwise fine.
When don’t I Worry about hypotension? When the patient is:

  • With it
  • Warm peripherally
  • Weeing
  • and (in hospital) Without a raised lactate


Case 6: Two cases of pump failure: STEMI and complete heart block
Adrenaline infusions can be simply made with a 1mg 1:10000 minijet diluted in a litre of saline and dripped through a peripheral line titrated to BP / HR / mentation / pulses.
In complete heart block (or other bradycardias) with hypotension, percussion pacing is an option of you don’t have access to transcutaneous or transvenous pacing. If you get capture, it’s as effective in terms of stroke volume as a pacing wire.
 
Case 7: Obstructive shock – tamponade cases
…with resolution of hypotension after drainage by emergency physicians who identified the tamponade on ultrasound, even though they didn’t suspect it clinically. It can be a surprise!
 
Case 8: Obstructive shock – tension pneumothorax
Patients are often agitated and won’t lie flat. They may complain of ‘tight’ breathing. Crackles and/or wheezes may be heard. The classic description of deviated trachea, absent breath sounds, and hyperresonance are the exception, not the rule. Be suspicious and always palpate for subcutaneous emphysema.
Don’t assume a needle decompression will work – there is debate about the best site but in some adults a standard needle won’t reach the pleural space. If you need to place more than one needle, go for it. As physicians, we do thoracostomies to ensure we’ve hit the spot.
 
Case 9: Obstructive shock – pulmonary embolism
A tough one prehospital, as the hypotensive ones need fibrinolysis. Fluid may help the hypotension but too much can overdistend the right ventricle which can then impair left ventricular filling, and worsen the patient’s circulatory state. Once again, ultrasound may be invaluable in highlighting PE as a possible cause for shock.
 
Case 10: Penetrating trauma to the ‘box’ – chest and upper abdomen.
If these patients arrest due to tamponade, early (< 10 minutes) clamshell thoracotomy can be life saving, which means it may need to be done pre-hospital by a HEMS physician to provide a chance of survival. Be on the look out for these and if in doubt activate a medical team (in New South Wales). Like with tension pneumothorax, these patients may be extremely agitated as a manifestation of their shock.
 
Case 11: Confused elderly male with pyrexia and smelly urine who appears ostensibly ‘normotensive’
…but how many 82 year olds do you know with a BP of 110/57? His acute confusion may be a manifestation of shock and he needs aggressive evaluation in hospital including a lactate measurement. Don’t be afraid to give this guy fluids in the field – you can make a big difference here.
Here are five of the myths I promised to expose:

So…shocked patients can talk and die. Don’t let that happen. Shocked patients can be normotensive, and hypotensive patients might not be shocked. Have a plan for how you might evaluate the 3+3 causes in your setting and what you can use from your medication and equipment list to manage volume, pump, and obstruction issues. You will save many lives if you become a serious shock detective.

Another reason to be skeptical about collars

More evidence that the obsession with cervical collars is founded on dogma rather than science


Background All trauma patients with a cervical spinal column injury or with a mechanism of injury with the potential to cause cervical spinal injury should be immobilised until a spinal injury is excluded. Immobilisation of the entire patient with a rigid cervical collar, backboard, head blocks with tape or straps is recommended by the Advanced Trauma Life Support guidelines. However there is insufficient evidence to support these guidelines.

Objective To analyse the effects on the range of motion of the addition of a rigid collar to head blocks strapped on a backboard.

Method The active range of motion of the cervical spine was determined by computerised digital dual inclinometry, in 10 healthy volunteers with a rigid collar, head blocks strapped on a padded spine board and a combination of both. Maximal opening of the mouth with all types of immobiliser in place was also measured.

Results The addition of a rigid collar to head blocks strapped on a spine board did not result in extra immobilisation of the cervical spine. Opening of the mouth was significantly reduced in patients with a rigid collar.

Conclusion Based on this proof of principle study and other previous evidence of adverse effects of rigid collars, the addition of a rigid collar to head blocks is considered unnecessary and potentially dangerous. Therefore the use of this combination of cervical spine immobilisers must be reconsidered.

Value of a rigid collar in addition to head blocks: a proof of principle study.
Emerg Med J. 2012 Feb;29(2):104-7

Prehospital thoracostomy tube misplacement

An interesting study from Germany examined prehospital thoracostomy tube (TT) placement by physicians working in the field. Of 69 patients who received them, 67 underwent prehospital intubation. 88 TT were placed in the 69 patients.
There were 19/88 (22%) radiologic chest tube misplacements (defined as too far in the chest, twisted, or bent). The position of 10/88 (11%) chest tubes had to be corrected. None of the patients with a TT had a “not-decompressed” pneumothorax or a chest tube placed below the diaphragm or into a solid organ.
Roughly half were placed in the ‘Monaldi’ position (the second or third intercostal space in the midclavicular line)…..

Monaldi position

 
 
 
 
 
 
 
 
 
…..and half in the Bülau position (fourth or fifth intercostal space in the midaxillary line).
Bülau position

 
 
 
 
 
 
 
 
 
There was no difference in the misplacement rates between the two positions although interestingly helicopter doctors (as opposed to ground response) more often opted for the Monaldi position.
It is not possible to tell from the results whether the TT insertion was indicated in all cases. Also, it would be interesting to know whether TT insertion preceded or followed tracheal intubation. While it is heartening that these physicians do not routinely rely on needle decompression, I cannot fathom while simple open thoracostomy was not used, avoiding the risk of tube misplacement and saving time.
See this post for a more thorough review of open thoracostomy and the limitations of needle decompression.


Objectives. To evaluate the frequency of use, placement site, success and misplacement rates, and need for intervention for tube thoracostomies (TTs), and the complications with endotracheal intubation associated with TT in the prehospital setting.

Methods. We performed a five-year, retrospective study using the records of 1,065 patients who were admitted to the trauma emergency room at a university hospital and who had received chest radiographs or computed tomography (CT) scans within 30 minutes after admission.

Results. Seven percent of all patients received a TT (5% unilateral, 2% bilateral). Ninety-seven percent of all patients with a TT were endotracheally intubated. The success rate for correctly placed chest tubes was 78%. Twenty-two percent of the chest tubes were misplaced (i.e., too far in the chest, twisted, or bent); half of those had to be corrected, with one needing to be replaced. There were no statistical differences in the frequency of Monaldi or Bülau positions, or the frequency of left or right chest TT. In addition, the two positions did not differ in misplacement rates or the need for intervention. Helicopter emergency medical services physicians used the Monaldi position significantly more frequently than the Bülau position. In-hospital physicians performing interhospital transfer used the Bülau position significantly more frequently, whereas ground emergency medical physicians had a more balanced relationship between the two positions. Tube thoracostomy had no influence on endotracheal tube misplacement rates, and vice versa.

Conclusion. Tube thoracostomy positioning mostly depends on the discretion of the physician on scene. The Monaldi and Bülau positions do not differ in misplacement or complication rates.

Incidence And Outcome Of Tube Thoracostomy Positioning In Trauma Patients
Prehosp Emerg Care. 2011 Oct 3. [Epub ahead of print]