The National Tracheostomy Safety Project at www.tracheostomy.org.uk in the UK aims to allow patients with tracheostomies or laryngectomies to be safely cared for in hospitals.
The site contains a wealth of educational resources of use to the critical care practitioner. For example, have you thought about what do with a laryngectomy patient who presents with dyspnoea, or even apnoea? Remember that although applying oxygen to the face & neck is a default emergency action for all patients with a tracheostomy, these patients cannot be intubated and ventilated through the normal oral route since their tracheostomy is an end stoma – it does not communicate with the mouth:
Compare this with the algorithm for other patients with a tracheostomy, in whom attempts to oxygenate and ventilate, including intubation, can be made in an emergency either from the ‘top end’ (mouth) or via the stoma:
There are also a number of multimedia resources and a link to the UK Intensive Care Society’s Tracheostomy Guidelines
Category Archives: ICU
Stuff relevant to patients on ICU
Percutaneous Dilatational Tracheostomy
In ICU, Percutaneous Dilatational Tracheostomy (PDT) is often performed to facilitate weaning from mechanical ventilation, reduce anatomical dead space, avoid laryngeal injury and aid in management of tracheobronchial and pulmonary secretions.
There is still controversy over optimal timing and case selection for PDT. Some organisations have helped to clarify the situation for practicing intensivists.
In 2010 the Australian and New Zealand Intensive Care Society (ANZICS) produced its Percutaneous Dilatational Tracheostomy Consensus Statement, to represent best current practice in Australia and New Zealand.
This can be downloaded from here.
A tracheal tube in the chest
Intercostal catheters can kink, obstruct, or get pulled out. These hazards are greater during transport of the patient. Critical care and retrieval medicine doctors in Queensland, Australia (where many people are having a bad time right now) have invented an elegant alternative: using a cuffed tracheal tube in the pleural space instead. It can be attached to a Heimlich valve.
They even used a bit of science to demonstrate its effectiveness, by creating pneumothoraces and haemothoraces in sheep and comparing the tracheal tube with a standard intercostal catheter (ICC).
The method for insertion is simple:
- Breach the pleura
- Insert a 14 Fr Cook intubating bougie into the thoracic cavity
- Railroad a 7.0 mm internal diameter tracheal tube (ETT) into the chest cavity
- Inflate the cuff
- Retract the tube until resistance is felt.
- Remove the ETT connector
- Attach a Heimlich valve
The results of the comparison are convincing: ‘The ETT proved faster to insert for both sheep. This was likely because it did not require suturing. Both the ETT and the ICC were comparable in draining blood. It was noted that neither tube was particularly effective when the haemothorax was positioned ‘side-up’. When turned ‘side-down’, both tubes successfully drained blood. Despite having multiple drainage ports, the ICC required more manipulation and was noted to kink. Conversely, the ETT with a single lumen and a Murphy eye, was stiffer and drained a similar amount of blood without the catheter having to be milked.’
Proposed advantages of this method include:
- More portable equipment
- Faster insertion
- Provides kit redundancy
- Does not require suturing
- Avoids operator trauma from any sharp edges such as a fractured rib. (No attempt was made to place a finger into the chest cavity in the ETT group).
- Allows for a smaller incision
- Less trauma to the insertion site
- Might also offer a back up, when conventional equipment has been exhausted.
The authors graciously note that both Portex and Cook have developed ICC kits that now go some way in supporting the original idea behind this study. These include flexible introducers (Portex) and guidewire insertion technique (Cook).
Appraisal of the endotracheal tube as an alternative to the intercostal catheter
Emerg Med Australas. 2010 Dec;22(6):573-4
Cuff pressures and tracheal injury
We all intubate patients with cuffed tubes, but we’re far too busy and important to fart around measuring tracheal tube cuff pressures when we’re saving lives right? Surely something the ICU nurses can sort out between ‘eye care’ and swabbing for MRSA.
The modern ‘high volume low pressure’ cuff has certainly led us to worry less about cuff pressures, and in frontline critical care specialties like emergency medicine and pre-hospital and retrieval medicine it’s the last thing on our minds. However we should consider the accumulating pool of evidence that tells us:
- Physicians are hopelessly poor at estimating cuff pressures based on palpating the pilot balloon
- Cuff pressures are frequently very high
- Tracheal mucosal injury can occur even after short term intubation (a few hours)
- When the pressure in the cuff exceeds 22 mm Hg, blood flow in the tracheal mucosa begins decreasing
- Tracheal mucosal blood flow reduces markedly when the pressure reaches 30 mm Hg
- When the pressure in the cuff reaches 50 mm Hg for 15 minutes, ischemic injury to the tracheal mucosa can occur
A study from China tested the hypothesis that an appropriate tracheal tube cuff (ETTc) pressure even in short procedures would reduce endotracheal intubation–related morbidity. They compared bronchoscopic appearance of tracheal mucosa, and patient symptoms of tracheal injury, in two groups of elective surgical patients anaesthetised and intubated between 120 and 180 minutes: a control group without measuring ETTc pressure, and a study group with ETTc pressure measured and adjusted to a range 15-25 mmHg. The endoscopist was blinded to the study group allocation.
The mean ETTc pressure measured after estimation by palpation of the pilot balloon of the study group was 43 +/- 23.3 mm Hg before adjustment (the highest was 210 mm Hg), and 20+/- 3.1 mm Hg after adjustment (p< 0.001). The incidence of postprocedural sore throat, hoarseness, and blood-streaked expectoration in the control group was significantly higher than in the study group. As the duration of endotracheal intubation increased, the incidence of sore throat and blood-streaked expectoration in the control group increased. The incidence of sore throat in the study group also increased with increasing duration of endotracheal intubation. Fiberoptic bronchoscopy showed that the tracheal mucosa was injured in varying degrees in both groups, but the injury was more severe in the control group than in the study group.
So..time to get a cuff manometer for your ED or helicopter? Perhaps you already have one. What do you think?
Correlations Between Controlled Endotracheal Tube Cuff Pressure and Postprocedural Complications: A Multicenter Study
Anesth Analg. 2010 Nov;111(5):1133-7
Related posts:
Cuff pressure in flight
Paediatric cuff pressures
Better outcome with paediatric retrieval teams
Data from the England and Wales Paediatric Intensive Care Audit Network on children (aged 16 years or younger) admitted to 29 regional paediatric intensive care units (PICUs) between 1 January 2005 and 31 December 2008 were analysed in a retrospective cohort study to assess the effectiveness of the specialist retrieval teams.
The type of transferring team (specialist or non-specialist) was known for 16 875 cases and was specialist in 13 729 (81%). Compared with children transferred to PICUs from within the same hospital, children transferred from other hospitals were younger (median age 10 months vs 18 months), more acutely ill (mortality risk 6% vs 4% using the Paediatric Index of Mortality), needed more resources (such as invasive ventilation, vasoactive drugs, renal replacement therapy, extracorporeal membrane oxygenation and/or multiple-organ support), had longer stays in the PICU (median 75 h vs 43 h) and had a higher crude mortality (8% vs 6%). On multivariable analysis after adjustment for case mix and organisational factors, the risk of death among interhospital transfers was significantly (35%) lower than among intrahospital transfers. With similar analysis, the times spent in PICU did not differ significantly between these two groups. When the type of transferring team was considered, crude mortality was similar with specialist and non-specialist teams, although the children transferred by the specialist teams were more severely ill. On multivariable analysis, the risk of death was 42% lower with specialist team transfer.
These findings appear to confirm the value of specialist retrieval teams. Why children transferred from other hospitals did better than children transferred to the PICU in the same hospital is not explained.
Effect of specialist retrieval teams on outcomes in children admitted to paediatric intensive care units in England and Wales: a retrospective cohort study
Lancet. 2010 Aug 28;376(9742):698-704
Less smelly than chicken drumsticks
Emergency and orthopaedic doctors Elizabeth and Anthony Bateman from Britain describe their method of making a bone simulator for intraosseous cannulation training:
- Take up to one Crunchie bar per trainee (leave in wrapper!) – this simulates the cancellous bone that is cannulated.
- Tightly plaster cast with four layers of polyester cast tape (12.5 cm width matches closely to Crunchie bar length), cutting lengths of the cast tape as needed prior to immersing in water – this simulates the hard cortical bone.
- Foam padding, or two layers of wool band from the plaster room, can be added to simulate soft tissue.
A quick google reveals it can be a challenge getting Crunchie bars in the United States. Maybe there’s a suitable honeycomb-centred alternative. If not you can resort to ordering them from Amazon.
Intraosseus access simulation: the Crunchie solution
Emerg Med J. 2010 Dec;27(12):961
VF on echo
How can you not love those guys at hqmeded.com?
Here’s a great case of theirs demonstrating the echocardiographic appearance of ventricular fibrillation – something we talk about on the BEAM course.
Australasian resus guidelines
Australian and New Zealand resuscitation councils have now revealed their resuscitation guidelines for adults and children. The index of guidelines can be found here
The Australian Resuscitation Council Online Index of Guidelines December 2010
Intubating spinal patients – the haemodynamics
Laryngoscopy and tracheal intubation transiently increase arterial pressure, heart rate (HR), and circulating catecholamines, in part attributed to reflex sympathetic discharge. In a complete spinal cord injury, the sympathetic nervous system and hence the cardiovascular responses to the intubation may be differentially affected according to the level of injury. Patients with acute quadriplegia often have a low resting arterial pressure due to inappropriate vasodilatation and loss of cardiac inotropy. Moreover, they frequently exhibit arrhythmias, reflex bradycardia, and cardiac arrest, especially during tracheal suction. In the days to weeks after injury, however, the reflex functioning of the lower cord recovers to maintain normal vascular tone. In the chronic stage, peripheral vascular changes and a loss of descending inhibitory control result in paroxysmal hypertension.
Korean investigators KY Yoo and colleagues1 aimed to determine the effect of the level (quadriplegia vs paraplegia) and duration of spinal cord injury on haemodynamic and catecholamine responses to laryngoscopy and tracheal intubation in patients with spinal cord injury. The outcome measures were the changes in systolic arterial pressure (SAP), HR, and catecholamine levels above awake baseline values after intubation.
Patients were divided into two groups: quadriplegia (above C7) and paraplegia (below T5). Each group was divided into six subgroups according to the time elapsed after the injury: <4 weeks (acute), 4 weeks– 1 yr, 1–5, 5–10, 10–20, and >20 yr. Twenty non-disabled patients undergoing surgery requiring tracheal intubation served as controls.
Patients with high-level paraplegia (T1–T4) were excluded because they were few in number and they had previously ‘shown different haemodynamic and catecholamine responses from the other groups‘ 2 which refers to work published by the same authors, in which high-paraplegic patients had a more pronounced increase in heart rate compared with other groups. Confusingly the ‘patients who were at increased risk of hyperkalemia after succinylcholine were excluded‘ although this statement appears only in the discussion, not the methods.
Anaesthesia was induced with sodium thiopental 5 mg/kg administered i.v. over 20 s, followed by succinylcholine 1 mg/kg for 5 s, and was followed by direct laryngoscopy and tracheal intubation.
Results were as follows:
The authors summarise: The pressor response was abolished in all quadriplegics regardless of the time elapsed after the injury. In contrast, the chronotropic and catecholamine responses differed over time. The chronotropic response was attenuated and the catecholamine response abolished in the acute quadriplegics. The chronotropic and catecholamine responses were improved in the quadriplegics after 4 weeks since the injury. In the paraplegic patients, cardiovascular responses did not change in the 10 yr after injury and the pressor response was enhanced at 10 yr or more after injury.
1.Altered cardiovascular responses to tracheal intubation in patients with complete spinal cord injury: relation to time course and affected level
Br J Anaesth. 2010 Dec;105(6):753-9
2. Hemodynamic and catecholamine responses to laryngoscopy and tracheal intubation in patients with complete spinal cord injuries.
Anesthesiolgy 2001; 95: 647–51
Paramedic RSI in Australia
A prospective, randomized, controlled trial compared paramedic rapid sequence intubation with hospital intubation in adults with severe traumatic brain injury in four cities in Victoria, Australia. The primary outcome was neurologic outcome at 6 months postinjury.
Training
Paramedics already experienced in ‘cold’ intubation (without drugs) undertook an additional 16-hour training program in the theory and practice of RSI, including class time (4 hours), practical intubating experience in the operating room under the supervision of an anesthesiologist (8 hours), and completion of a simulation-based examination (4 hours).
Methods
Patients included in the study were those assessed by paramedics on road ambulances as having all the following: evidence of head trauma, Glasgow Coma Score ≤9, age ≥15 years, and ‘intact airway reflexes’, although this is not defined or explained. Patients were excluded if any of the following applied: within 10 minutes of a designated trauma hospital, no intravenous access, allergy to any of the RSI drugs (as stated by relatives or a medical alert bracelet), or transport planned by medical helicopter. Drug therapy for intubation consisted of fentanyl (100μg), midazolam (0.1 mg/kg), and succinylcholine (1.5 mg/kg) administered in rapid succession. Atropine (1.2 mg) was administered for a heart rate <60/min. A minimum 500 mL fluid bolus (lactated Ringers Solution) was administered. A half dose of the sedative drugs was used in patients with hypotension (systolic blood pressure <100 mm Hg) or older age (>60 years).
Cricoid pressure was applied in all patients. After intubation and confirmation of the position of the endotracheal tube using the presence of the characteristic waveform on a capnograph, patients received a single dose of pancuronium (0.1 mg/kg), and an intravenous infusion of morphine and midazolam at 5 to 10 mg/h each. If intubation was not achieved at the first attempt, or the larynx was not visible, one further attempt at placement of the endotracheal tube over a plastic airway bougie was permitted. If this was unsuccessful, ventilation with oxygen using a bag/mask and an oral airway was commenced and continued until spontaneous respirations returned. Insertion of a laryngeal mask airway was indicated if bag/mask ventilation using an oral airway appeared to provide inadequate ventilation. Cricothyroidotomy was indicated if adequate ventilation could not be achieved with the above interventions. In all patients, a cervical collar was fitted, and hypotension (systolic blood pressure <100 mm Hg) was treated with a 20 mL/kg bolus of lactated Ringers Solution that could be repeated as indicated. Other injuries such as fractures were treated as required. In the hospital emergency department, patients who were not intubated underwent immediate RSI by a physician prior to chest x-ray and computed tomography head scan.
Follow up
At 6 months following injury, surviving patients or their next-of-kin were interviewed by telephone using a structured questionnaire and allocated a score from 1 (deceased) to 8 (normal) using the extended Glasgow Outcome Scale (GOSe). The interviewer was blinded to the treatment allocation.
Statistical power
A sample size of 312 patients was calculated to achieve 80% power at an alpha error of 0.05. Three hundred twenty-eight patients met the enrollment criteria. Three hundred twelve patients were randomly allocated to either paramedic intubation (160 patients) or hospital intubation (152 patients). A mean Injury Severity Score of 25 indicated that many patients had multiple injuries.
Success of intubation
Of the 157 patients administered RSI drugs, intubation was successful in 152 (97%) patients. The remaining 5 patients had esophageal placement of the endotracheal tube recognized immediately on capnography. The endotracheal tube was removed and the patients were managed with an oropharyngeal airway and bag/mask ventilation with oxygen and transported to hospital. There were no cases of unrecognised esophageal intubation on arrival at the emergency department during this study and no patient underwent cricothyroidotomy.
Outcome
After admission to hospital, both groups appeared to receive similar rates of neurosurgical interventions, including initial CT scan, urgent craniotomy (if indicated), and monitoring of intracranial pressure in the intensive care unit.
Favorable neurologic outcome was increased in the paramedic intubation patients (51%) compared with the hospital intubation patients (39%), just reaching statistical significance with P = 0.046. A limitation is that 13 of 312 patients were lost to follow-up and the majority of these were in the hospital intubation group. The authors do point out that the difference in outcomes would no longer be statistically significant whether one more patient had a positive outcome in the treatment group (P = 0.059) or one less in the control group (P = 0.061). The median GOSe was higher in the paramedic intubation group compared with hospital intubation (5 vs. 3), however, this did not reach statistical significance (P = 0.28).
More patients in the paramedic intubation group suffered prehospital cardiac arrest. There were 10 cardiac arrests prior to hospital arrival in the paramedic RSI group and 2 in the patients allocated to hospital intubation. Further detail on these patients is provided in the paper. The authors state that it is likely that the administration of sedative drugs followed by positive pressure ventilation had adverse hemodynamic consequences in patients with uncontrolled bleeding, and that it is possible that the doses of sedative drugs administered in this study to hemodynamically unstable patients were excessive and consideration should be given to a decreasing the dose of sedation.
Authors’ conclusions
The authors overall conclusion is that patients with severe TBI should undergo prehospital intubation using a rapid sequence approach to increase the proportion of patients with favorable neurologic outcome at 6 months postinjury. Further studies to determine the optimal protocol for paramedic rapid sequence intubation that minimize the risk of cardiac arrest should be undertaken.
Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial.
Ann Surg. 2010 Dec;252(6):959-65.
Victorian Ambulance Service protocols are available here, which include their current paramedic RSI protocol