Tag Archives: pre-hospital

Traumatic cardiac arrest outcomes

simEver heard anyone spout dogma along the lines of: “it’s a traumatic cardiac arrest – resuscitation is futile as the outcome is hopeless: survival is close to zero per cent”?
I have. Less frequently in recent years, I’ll admit, but you still hear it spout forth from the anus of some muppet in the trauma team. Here’s some recent data to add to the existing literature that challenges the ‘zero per cent survival’ proponents. A Spanish study retrospectively analysed 167 traumatic cardiac arrests (TCAs). 6.6% achieved a complete neurological recovery (CNR), which increased to 9.4% if the first ambulance to arrive contained an advanced team including a physician. Rhythm and age were important: CNR was achieved in 36.4% of VFs, 7% of PEAs, and 2.7% of those in asystole; survival rate by age groups was 23.1% in children, 5.7% in adults, and 3.7% in the elderly.
Since traumatic arrest tends to affect a younger age group than medical arrests, the authors suggest:
Avoiding the potential decrease in life expectancy in this kind of patient justifies using medical resources to their utmost potential to achieve their survival
Since 2.7% of the asystolic patients achieved a CNR, the authors challenge the practice proposed by some authors that Advanced Life Support be withheld in TCA patients with asystole as the initial rhythm:
had that indication been followed, three of our patients who survived neurologically intact would have been declared dead on-scene.”
I’d like to know what interventions were making the difference in these patients. They describe what’s on offer as:


In our EMS, all TCA patients receive ALS on-scene, which includes intubation, intravenous access, fluid and drug therapy, point-of-care blood analysis, and procedures such as chest drain insertion, pericardiocentesis, or Focused Assessment with Sonography for Trauma ultrasonography to improve the treatment of the cause of the TCA.

It appears that crystalloids and colloids are their fluid therapy of choice; unlike many British and Australian physician-based prehospital services they made no mention of the administration of prehospital blood products.
Traumatic cardiac arrest: Should advanced life support be initiated?
J Trauma Acute Care Surg. 2013 Feb;74(2):634-8
[EXPAND Abstract]


BACKGROUND: Several studies recommend not initiating advanced life support in traumatic cardiac arrest (TCA), mainly owing to the poor prognosis in several series that have been published. This study aimed to analyze the survival of the TCA in our series and to determine which factors are more frequently associated with recovery of spontaneous circulation (ROSC) and complete neurologic recovery (CNR).

METHODS: This is a cohort study (2006-2009) of treatment benefits.

RESULTS: A total of 167 TCAs were analyzed. ROSC was obtained in 49.1%, and 6.6% achieved a CNR. Survival rate by age groups was 23.1% in children, 5.7% in adults, and 3.7% in the elderly (p < 0.05). There was no significant difference in ROSC according to which type of ambulance arrived first, but if the advanced ambulance first, 9.41% achieved a CNR, whereas only 3.7% if the basic ambulance first. We found significant differences between the response time and survival with a CNR (response time was 6.9 minutes for those who achieved a CNR and 9.2 minutes for those who died). Of the patients, 67.5% were in asystole, 25.9% in pulseless electrical activity (PEA), and 6.6% in VF. ROSC was achieved in 90.9% of VFs, 60.5% of PEAs, and 40.2% of those in asystole (p < 0.05), and CNR was achieved in 36.4% of VFs, 7% of PEAs, and 2.7% of those in asystole (p < 0.05). The mean (SD) quantity of fluid replacement was greater in ROSC (1,188.8 [786.7] mL of crystalloids and 487.7 [688.9] mL of colloids) than in those without ROSC (890.4 [622.4] mL of crystalloids and 184.2 [359.3] mL of colloids) (p < 0.05).

CONCLUSION: In our series, 6.6% of the patients survived with a CNR. Our data allow us to state beyond any doubt that advanced life support should be initiated in TCA patients regardless of the initial rhythm, especially in children and those with VF or PEA as the initial rhythm and that a rapid response time and aggressive fluid replacement are the keys to the survival of these patients.

[/EXPAND]

Advanced airways and worse outcomes in cardiac arrest

A new study demonstrates an association between advanced prehospital airway management and worse clinical outcomes in patients with cardiac arrest. Done in Japan, the numbers of patients included are staggering: this nationwide population-based cohort study included 658 829 adult patients. They found that CPR with advanced airway management (use of tracheal tubes and even supraglottic airways) was a significant predictor of poor neurological outcome compared with conventional bag-valve-mask ventilation.
Association of Prehospital Advanced Airway Management With Neurologic Outcome and Survival in Patients With Out-of-Hospital Cardiac Arrest
JAMA 2013;309(3):257-66
[EXPAND Click to read abstract]


Importance It is unclear whether advanced airway management such as endotracheal intubation or use of supraglottic airway devices in the prehospital setting improves outcomes following out-of-hospital cardiac arrest (OHCA) compared with conventional bag-valve-mask ventilation.

Objective To test the hypothesis that prehospital advanced airway management is associated with favorable outcome after adult OHCA.

Design, Setting, and Participants Prospective, nationwide, population-based study (All-Japan Utstein Registry) involving 649 654 consecutive adult patients in Japan who had an OHCA and in whom resuscitation was attempted by emergency responders with subsequent transport to medical institutions from January 2005 through December 2010.

Main Outcome Measures Favorable neurological outcome 1 month after an OHCA, defined as cerebral performance category 1 or 2.

Results Of the eligible 649 359 patients with OHCA, 367 837 (57%) underwent bag-valve-mask ventilation and 281 522 (43%) advanced airway management, including 41 972 (6%) with endotracheal intubation and 239 550 (37%) with use of supraglottic airways. In the full cohort, the advanced airway group incurred a lower rate of favorable neurological outcome compared with the bag-valve-mask group (1.1% vs 2.9%; odds ratio [OR], 0.38; 95% CI, 0.36-0.39). In multivariable logistic regression, advanced airway management had an OR for favorable neurological outcome of 0.38 (95% CI, 0.37-0.40) after adjusting for age, sex, etiology of arrest, first documented rhythm, witnessed status, type of bystander cardiopulmonary resuscitation, use of public access automated external defibrillator, epinephrine administration, and time intervals. Similarly, the odds of neurologically favorable survival were significantly lower both for endotracheal intubation (adjusted OR, 0.41; 95% CI, 0.37-0.45) and for supraglottic airways (adjusted OR, 0.38; 95% CI, 0.36-0.40). In a propensity score–matched cohort (357 228 patients), the adjusted odds of neurologically favorable survival were significantly lower both for endotracheal intubation (adjusted OR, 0.45; 95% CI, 0.37-0.55) and for use of supraglottic airways (adjusted OR, 0.36; 95% CI, 0.33-0.39). Both endotracheal intubation and use of supraglottic airways were similarly associated with decreased odds of neurologically favorable survival.

Conclusion and Relevance Among adult patients with OHCA, any type of advanced airway management was independently associated with decreased odds of neurologically favorable survival compared with conventional bag-valve-mask ventilation.

[/EXPAND]

Point of care analysis of intraosseous samples

Some good news for remote, rural, prehospital, and retrieval medicine clinicians who rely on point of care testing with the i-STAT® device. An animal study confirmed the reliability of testing aspirates from intraosseous samples taken from the tibia(1).
This is also good news for hospital practitioners when it comes to the acquisition of blood gas results, since there are concerns over the potential damage to blood gas analysers by bone marrow contents in the samples.
The researchers tested blood gases, acid–base status, lactate, haemoglobin, and electrolytes, and compared these with results from an arterial sample.
There was no malfunction of the equipment. Most of the acid–base parameters showed discrepancies between arterial and osseous samples: the average pH and base excess were consistently lower whilst pCO2 and lactate were higher in the intraosseous samples compared to the arterial. However the overall small degree and predictable direction of discrepancy in these values should preserve the clinical usefulness of intraosseous gases if these findings can be replicated in human subjects. pO2 was obviously very different between osseous and arterial samples.
They noted that aspiration of intraosseous samples was generally straightforward, especially immediately after placement of the cannulae, but on a few occasions more forceful aspiration was needed. They point out that this could possibly cause cellular lysis and affect the potassium analysis.
The authors consider the issue of how much aspirate should be discarded before taking a sample after intraosseous cannula insertion, and refer to a prior study which suggested that 2mL is adequate.

Summary

  • Intraosseous aspirate can be tested on an i-STAT® point-of-care analyser
  • Haemoglobin and electrolytes show good correlation with arterial samples
  • Acid-base, pCO2, and lactate differ slightly from arterial results but in a predictable direction and results are still likely to be clinically useful in an emergency
  • It may be worth discarding the first 2 ml of aspirate
  • These results require validation in human subjects

Analysis of intraosseous samples using point of care technology–an experimental study in the anaesthetised pig
Resuscitation. 2012 Nov;83(11):1381-5
[EXPAND Click to read abstract]

BACKGROUND: Intraosseous access is an essential method in emergency medicine when other forms of vascular access are unavailable and there is an urgent need for fluid or drug therapy. A number of publications have discussed the suitability of using intraosseous access for laboratory testing. We aimed to further evaluate this issue and to study the accuracy and precision of intraosseous measurements.
METHODS: Five healthy, anaesthetised pigs were instrumented with bilateral tibial intraosseous cannulae and an arterial catheter. Samples were collected hourly for 6h and analysed for blood gases, acid base status, haemoglobin and electrolytes using an I-Stat point of care analyser.
RESULTS: There was no clinically relevant difference between results from left and right intraosseous sites. The variability of the intraosseous sample values, measured as the coefficient of variance (CV), was maximally 11%, and smaller than for the arterial sample values for all variables except SO2. For most variables, there seems to be some degree of systematic difference between intraosseous and arterial results. However, the direction of this difference seems to be predictable.
CONCLUSION: Based on our findings in this animal model, cartridge based point of care instruments appear suitable for the analysis of intraosseous samples. The agreement between intraosseous and arterial analysis seems to be good enough for the method to be clinically useful. The precision, quantified in terms of CV, is at least as good for intraosseous as for arterial analysis. There is no clinically important difference between samples from left and right tibia, indicating a good reproducibility.

[/EXPAND]

London Calling – part 2

Notes from Days 2 & 3 of the London Trauma Conference
Day 2 of the LTC was really good. There were some cracking speakers who clearly had the ‘gift’ when it comes to entertaining the audience. No death by PowerPoint here (although it seems Keynote is now the presentation software of choice!). The theme of the day was prehospital care and major incidents.
The golden nuggets to take away include: (too many to list all of course)

  • ‘Pull’ is the key to rapid extrication from cars if time critical from the Norweigan perspective. Dr Lars Wik of the Norweigen air ambulance presented their method of rapid extrication. Essentially they drag the car back on the road or away from what ever it has crashed into to control the environment and make space (360 style). They put a paramedic in the car whilst this is happening. They then make a cut in the A post near the roof, secure the rear of the car to a fire truck or fixed object with a chain and put another chain around the lower A post and steering wheel that is then winched tight. This has the effect of ‘reversing’ the crash and a few videos showed really fast access to the patient. The car seems to peel open. As they train specifically for it, there doesn’t seem to be any safety problems so far and its much quicker than their old method. I guess it doesnt matter really how you organise a rapid extrication method as long as it is trained for and everyone is on the same page.
  • Dr Bob Winter presented his thoughts on hangings – to date no survivor of a non-judicial hanging has had a C-spine injury, so why do we collar them? Also there seems no point in cooling them. All imaging and concern for these patients should be based on the significant soft tissue injury that can be caused around the neck.
  • Drownings – if the patient is totally submerged probably reasonable to search for 30mins in water that is >6 degrees or 90mins if <6 degrees. After that it becomes a body recovery (unless there is an air pocket or some exceptional circumstance). Patients that have drowned should have early ventilatory support if they show any signs of resp distress.
  • Drs Julian Thompson and Mark Byers reassured us on a variety of safety issues at major incidents. It seems the risk to rescuers from secondary bombs at scene is low. Very few terrorist attacks world wide, ever, have had secondary devices so rescuers should be reassured (a bit). Greatest risk to the rescuer, like always, are the silly simple things that are a risk every day, like tripping over your own feet! With reference to chemical incidents, simple PPE seems to be sufficient for the vast majority of incidents, even fairly significant chemical ones, all this mucking about in full air tight suits is probably pointless and means patients cant be treated (at all). This led to the debate of how much risk should we, as rescue staff, accept? Clearly there are no absolute answers but minimising all risk to the rescuer is often at conflict with your ability to rescue. Where the balance should lie is a matter for organisations and individuals I guess.
  • Sir Prof Keith Porter also gave us an update on the future of Prehospital emergency medicine as a recognised medical specialty. As those in the know, know, the specialty has been recognised by the GMC and the first draft of trainees are currently in post. More deaneries will be following suit soon to begin training but it is likely to take some time to build up large numbers of trained specialists. Importantly for those of us who already have completed our training there will be an option to sub specialise in PHEM but it will involve undertaking the FIMC exam. Great, more exams – see you there.

 
Day 3 – Major trauma
The focus of day 3 was that of damage control. Damage control surgery and damage control resucitation. We had indepth discussions about how to manage pelvic trauma and some of the finer points of trauma resuscitation.
Specific points raised were:

  • Pelvic binders are great and can replace an ex fix if the abdomen needs opening to fix a spleen for example.
  • You can catheterise patients with pelvic fractures (one gentle try).
  • Most pelvic bleeds are venous which is why surgeons who can pack a pelvis is better than a radiologist who can mainly only treat arterial bleeds.
  • Coagulopathy in trauma is not DIC and is probably caused by peripheral hypoperfusion.
  • All the standard clotting tests that we use (INR etc) are useless and take too long to do. ROTEM or TEG is much better but still not perfect.

Also, as I am sure will please many – pressure isn’t flow so dont use pressors in trauma!
 
 


Chris Hill is an emergency and prehospital care physician based in the United Kingdom

Prehospital ketamine analgesia

A prospective open-label randomised controlled trial in prehospital patients receiving morphine for traumatic pain compared intravenous ketamine with additional morphine.
Analgesia was superior in the ketamine group, with some minor (expected) adverse effects.
This small study adds to the prehospital ketamine literature and provides some support to ambulance services considering introducing ketamine analgesia.


Study objective: We assess the efficacy of intravenous ketamine compared with intravenous morphine in reducing pain in adults with significant out-of-hospital traumatic pain.

Methods: This study was an out-of-hospital, prospective, randomized, controlled, open-label study. Patients with trauma and a verbal pain score of greater than 5 after 5 mg intravenous morphine were eligible for enrollment.
Patients allocated to the ketamine group received a bolus of 10 or 20 mg, followed by 10 mg every 3 minutes thereafter. Patients allocated to the morphine alone group received 5 mg intravenously every 5 minutes until pain free. Pain scores were measured at baseline and at hospital arrival.

Results: A total of 135 patients were enrolled between December 2007 and July 2010. There were no differences between the groups at baseline. After the initial 5-mg dose of intravenous morphine, patients allocated to ketamine received a mean of 40.6 mg (SD 25 mg) of ketamine. Patients allocated to morphine alone received a mean of 14.4 mg (SD 9.4 mg) of morphine. The mean pain score change was 5.6 (95% confidence interval [CI] 6.2 to 5.0) in the ketamine group compared with 3.2 (95% CI 3.7 to 2.7) in the morphine group. The difference in mean pain score change was 2.4 (95% CI 3.2 to 1.6) points. The intravenous morphine group had 9 of 65 (14%; 95% CI 6% to 25%) adverse effects reported (most commonly nausea [6/65; 9%]) compared with 27 of 70 (39%; 95% CI 27% to 51%) in the ketamine group (most commonly disorientation [8/70; 11%]).

Conclusion: Intravenous morphine plus ketamine for out-of-hospital adult trauma patients provides analgesia superior to that of intravenous morphine alone but was associated with an increase in the rate of minor adverse effects.

Morphine and Ketamine Is Superior to Morphine Alone for Out-of-Hospital Trauma Analgesia: A Randomized Controlled Trial
Ann Emerg Med. 2012 Jun;59(6):497-503

Nonshockable arrest survival improves with uninterrupted compressions

A study of nonshockable out of hospital cardiac arrest survival showed significant improvement in short- and long-term survival and neurological outcome after implementation of a protocol consistent with CPR guidelines that prioritised chest compressions. These improvements were especially evident among arrests attributable to a cardiac cause, although there was no evidence of harm among arrests attributable to a noncardiac cause.
This was not a randomised trial so unrecognised factors may have contributed to the improved outcome in addition to the change in CPR protocol. However, it is interesting as it provides up to date survival rates from a large population sample: Non shockable out of hospital cardiac arrests achieve return of spontaneous circulation in 34%, 6.8% are discharged from hospital (5.1% with a favourable neurological outcome), and 4.9% survived one year.
The breakdown between PEA and asystole is of course telling, and unsurprising, with 12.8% versus 1.1% being discharged with a favourable neurological outcome, respectively. I would imagine then that some of the PEA patients had beating hearts with hypotension extreme enough to cause pulselessness (pseudo-electromechanical dissociation) – clinically a ‘cardiac arrest’ but really nothing of the sort, and the reason we use cardiac ultrasound to prognosticate.


BACKGROUND: Out-of-hospital cardiac arrest (OHCA) claims millions of lives worldwide each year. OHCA survival from shockable arrhythmias (ventricular fibrillation/ tachycardia) improved in several communities after implementation of American Heart Association resuscitation guidelines that eliminated “stacked” shocks and emphasized chest compressions. “Nonshockable” rhythms are now the predominant presentation of OHCA; the benefit of such treatments on nonshockable rhythms is uncertain.

METHODS AND RESULTS: We studied 3960 patients with nontraumatic OHCA from nonshockable initial rhythms treated by prehospital providers in King County, Washington, over a 10-year period. Outcomes during a 5-year intervention period after adoption of new resuscitation guidelines were compared with the previous 5-year historical control period. The primary outcome was 1-year survival. Patient demographics and resuscitation characteristics were similar between the control (n=1774) and intervention (n=2186) groups, among whom 471 of 1774 patients (27%) versus 742 of 2186 patients (34%), respectively, achieved return of spontaneous circulation; 82 (4.6%) versus 149 (6.8%) were discharged from hospital, 60 (3.4%) versus 112 (5.1%) with favorable neurological outcome; 73 (4.1%) versus 135 (6.2%) survived 1 month; and 48 (2.7%) versus 106 patients (4.9%) survived 1 year (all P≤0.005). After adjustment for potential confounders, the intervention period was associated with an improved odds of 1.50 (95% confidence interval, 1.29-1.74) for return of spontaneous circulation, 1.53 (95% confidence interval, 1.14-2.05) for hospital survival, 1.56 (95% confidence interval, 1.11-2.18) for favorable neurological status, 1.54 (95% confidence interval, 1.14-2.10) for 1-month survival, and 1.85 (95% confidence interval, 1.29-2.66) for 1-year survival.

CONCLUSION: Outcomes from OHCA resulting from nonshockable rhythms, although poor by comparison with shockable rhythm presentations, improved significantly after implementation of resuscitation guideline changes, suggesting their potential to benefit all presentations of OHCA.

Impact of changes in resuscitation practice on survival and neurological outcome after out-of-hospital cardiac arrest resulting from nonshockable arrhythmia
Circulation. 2012 Apr 10;125(14):1787-94

Laryngospasm after Ketamine

A case is reported in Prehospital Emergency Care1 in which an agitated patient (due to mania and alcohol intoxication) received 5 mg/kg (500 mg) of ketamine intramuscularly by an EMS crew which dissociated him within a few minutes. He subsequently developed episodes of laryngospasm in the emergency department which were unrelieved by head tilt, chin lift and simple airway adjuncts but responded to bag-mask ventilation (BMV). The patient was intubated because the laryngospasm recurred, although it had again responded to BMV.
The authors make the point that because of the response of laryngospasm to simple manoeuvres, and because in the prehospital environment a patient will not be left without an EMS provider present, ‘restricting ketamine to EMS units capable of rapid-sequence intubation therefore seems unnecessary.
This is one for EMS directors to consider seriously. Personally, I think practicing prehospital care without access to ketamine is like having a hand tied behind my back. Ketamine opens up a world of possibilities in controlling combative patients, optimising scene safety, providing sedation for painful procedures including extrication, and enabling severe pain to be controlled definitively.
I’ve been using ketamine regularly for prehospital analgesia and emergency department procedural sedation in both adults and kids for more than a decade. I’ve seen significant laryngospasm 5 times (twice in kids). On one of those occasions, a 3 year old child desaturated to around 50% twice during two episodes of laryngospasm. We weren’t slow to pick it up – that was just her showing us how quickly kids can desaturate which continued while we went through a stepwise approach until BMV resolved it. It was however an eye opener for the registrar (senior resident) assisting me, who became extremely respectful of ketamine after that. Our ED sedation policy (that I wrote) required that suxamethonium was ready and available and that an appropriate dose had been calculated before anyone got ketamine. Paralysis may extremely rarely be required, but when it’s needed you need to be ready.

The best monitor for laryngospasm – noninvasive capnography

Laryngospasm is rare but most regular prescribers of ketamine will have seen it; the literature says it occurs in about 1-2% of sedations, although anecdotally I think it’s a bit less frequent. Importantly for those weighing the risks of allowing non-RSI competent prescribers, the requirement for intubation is exceptionally rare (2 of 11,589 reported cases in one review). Anyone interested should read this excellent review of ketamine-related adverse effects provided by Chris Nickson at Life in The Fast Lane. Chris reminds us of the Larson manouevre, which is digital pressure in the notch behind and below the ear, described by Larson2 as follows:

The technique involves placing the middle finger of each hand in what I term the laryngospasm notch. This notch is behind the lobule of the pinna of each ear. It is bounded anteriorly by the ascending ramus of the mandible adjacent to the condyle, posteriorly by the mastoid process of the temporal bone, and cephalad by the base of the skull. The therapist presses very firmly inward toward the base of the skull with both fingers, while at the same time lifting the mandible at a right angle to the plane of the body (i.e., forward displacement of the mandible or “jaw thrust”). Properly performed, it will convert laryngospasm within one or two breaths to laryngeal stridor and in another few breaths to unobstructed respirations.

I use this point most often to provide painful stimuli when assessing GCS in a patient, particular those I think may be feigning unconsciousness (I’ve done this for a number of years since learning how painful it can be when I was shown it by a jujitsu instructor). Dr Larson says he was taught the technique by Dr Guadagni, so perhaps we should be calling it the ‘Guadagni manouevre’. The lack of published evidence has led to some appropriate skepticism3, but as it can be combined with a jaw thrust it needn’t delay more aggressive interventions should they become necessary, it may work, and it’s likely to be harmless.
I presented the following suggested algorithm for management of laryngospasm during ketamine procedural sedation at a regional emergency medicine ‘Fellows Forum’ meeting in November 2007 in the UK. Since many paediatric procedural sedations were done using intramuscular (im) ketamine, it gives guidance based on whether or not vascular access has been obtained:

Some things I considered were:

    • Neuromuscular blockade (NMB) isn’t always necessary – laryngospasm may be managed with other sedatives such as propofol. However, titrating further sedatives in a desaturating child in my view is inferior to definitive airway management and laryngeal relaxation with suxamethonium and a tube.
    • Laryngospasm may be managed with much smaller doses of suxamethonium than are required for intubation – as little as 0.1 mg/kg may be effective. However, I think once we go down the NMB route we’re committed to intubation and therefore we should use a dose guaranteed to be effective in achieving intubating conditions.
    • In the child without vascular access, I considered intraosseous and intralingual sux. However, intramuscular suxamethonium is likely to have a relaxant effect on the laryngeal muscles within 30-45 seconds, which has to be compared with time taken to insert and confirm intraosseous needle placement. I do not think the traditionally recommended intralingual injection has any role to play in modern airway management.
  • At the time I wrote this most paediatric resuscitation bays in my area in the United Kingdom had breathing circuits capable of delivering PEEP – usually the Ayr’s T-Piece (specifically the Mapleson F system), which is why PEEP was included early in in the algorithm prior to BMV.
I have since modified it for two reasons: firstly, we might as well do the Larson manoeuvre during the jaw thrust; secondly, many Australasian and US EDs will only be able to deliver PEEP with a PEEP valve attached to a BVM, so PEEP has been moved to the BVM stage.
I would love to hear what people are doing in their prehospital and inhospital practice. Should ketamine only be administered by providers who can offer RSI? Do you have a laryngospasm protocol? If so, I’d love to see it. If not, feel free to use or adapt my unvalidated one at your own risk.

ABSTRACT An advanced life support emergency medical services (EMS) unit was dispatched with law enforcement to a report of a male patient with a possible overdose and psychiatric emergency. Police restrained the patient and cleared EMS into the scene. The patient was identified as having excited delirium, and ketamine was administered intramuscularly. Sedation was achieved and the patient was transported to the closest hospital. While in the emergency department, the patient developed laryngospasm and hypoxia. The airway obstruction was overcome with bag–valve–mask ventilation. Several minutes later, a second episode of laryngospasm occurred, which again responded to positive-pressure ventilation. At this point the airway was secured with an endotracheal tube. The patient was uneventfully extubated several hours later. This is the first report of laryngospam and hypoxia associated with prehospital administration of intramuscular ketamine to a patient with excited delirium.

1. Laryngospasm and Hypoxia After Intramuscular Administration of Ketamine to a Patient in Excited Delirium
Prehosp Emerg Care. 2012 Jul;16(3):412-4
2. Laryngospasm-The best treatment
Anesthesiology 1998; 89:1293-4
3. Management of Laryngospasm
http://www.respond2articles.com/ANA/forums/thread/1096.aspx

Lung ultrasound for pneumothorax by paramedics

This UK study showed that paramedics could successfully acquire and identify lung ultrasound images after a two day course. The course covered the identification and management of patients who present with serious thoracic injury, with a specific focus on the use of thoracic ultrasound during early prehospital assessment. Standard 2D images for pleural sliding and comet tails and M-Mode for the ‘seashore sign’ were acquired, and colour Doppler was also used to assist in the identification of pleural sliding.


Objective This trial investigated whether advanced paramedics from a UK regional ambulance service have the ability to acquire and interpret diagnostic quality ultrasound images following a 2-day programme of education and training covering the fundamental aspects of lung ultrasound.

Method The participants were tested using a two-part examination; assessing both their theoretical understanding of image interpretation and their practical ability to acquire diagnostic quality ultrasound images. The results obtained were subsequently compared with those obtained from expert physician sonographers.

Results The advanced paramedics demonstrated an overall accuracy in identifying the presence or absence of pneumothorax in M-mode clips of 0.94 (CI 0.86 to 0.99), compared with the experts who achieved 0.93 (CI 0.67 to 1.0). In two-dimensional mode, the advanced paramedics demonstrated an overall accuracy of 0.78 (CI 0.72 to 0.83), compared with the experts who achieved 0.76 (CI 0.62 to 0.86). In total, the advanced paramedics demonstrated an overall accuracy at identifying the presence or absence of pneumothorax in prerecorded video clip images of 0.82 (CI 0.77 to 0.86), in comparison
with the expert users of 0.80 (CI 0.68 to 0.88). All of the advanced paramedics passed the objective structured clinical examination and achieved a practical standard considered by the examiners to be equivalent to that which would be expected from candidates enrolled on the thoracic module of the College of Emergency Medicine level 2 ultrasound programme.

Conclusion This trial demonstrated that ultrasound-naive practitioners can achieve an acceptable standard of competency in a simulated environment in a relatively short period of time.

Acquisition and interpretation of focused diagnostic ultrasound images by ultrasound-naive advanced paramedics: trialling a PHUS education programme
Emerg Med J, 2012 vol. 29 (4) pp. 322-326

Prehospital burn management in a combat zone.

A military study revealed troops suffering from severe burns tended to receive either no prehospital fluid or too much fluid1.
The authors point out some practical realities and an attempted solution:


For a medic potentially treating multiple casualties at once in a hostile environment, the calculation of the modified Brooke or Parkland formula may be unrealistic prior to beginning fluid resuscitation in the prehospital setting.

The USAISR’s Rule of 10 is a simplified formula to guide the initial fluid resuscitation of a burn victim. The burn size is estimated to the nearest 10% TBSA. For patients weighing 40 to 80 kg, the burn size is then multiplied by 10 to give the initial fluid rate in milliliters per hour. The rate is increased by 100 mL/hour for every 10 kg above 80 kg in terms of the patient’s weight. For the majority of adult burn patients, the Rule of 10 approximates the initial fluid rate within accepted ABA guidelines.

A previous study on the rule of 10 showed it provided an estimate that fell between the modified Brooke and Parkland estimates 87.8% of the time, less than the modified Brooke <12% of the time, and hardly ever (>1%) exceeded the Parkland estimate2.


OBJECTIVE: The purpose of this article is to provide a descriptive study of the management of burns in the prehospital setting of a combat zone.

METHODS: A retrospective chart review was performed of U.S. casualties with >20% total-body-surface-area thermal burns, transported from the site of injury to Ibn Sina Combat Support Hospital (CSH) between January 1, 2006, and August 30, 2009.

RESULTS: Ibn Sina CSH received 225 burn casualties between January 2006 and August 2009. Of these, 48 met the inclusion criteria. The mean Injury Severity Score was 31.7 (range 4 to 75). Prehospital vascular access was obtained in 24 casualties (50%), and 20 of the casualties received fluid resuscitation. Out of the 48 casualties enrolled, 28 (58.3%) did not receive prehospital fluid resuscitation. Of the casualties who received fluid resuscitation, nearly all received volumes in excess of the guidelines established by the American Burn Association and those recommended by the Committee for Tactical Combat Casualty Care. With regard to pain management in the prehospital setting, 13 casualties (27.1%) received pain medication.

CONCLUSIONS: With regard to the prehospital fluid resuscitation of primary thermal injury in the combat zone, two extremes were noted. The first group did not receive any fluid resuscitation; the second group was resuscitated with fluid volumes higher than those expected if established guidelines were utilized. Pain management was not uniformly provided to major burn casualties, even in several with vascular access. These observations support improved education of prehospital personnel serving in a combat zone.

1. Prehospital burn management in a combat zone
Prehosp Emerg Care, 2012 vol. 16 (2) pp. 273-276
2. Simple derivation of the initial fluid rate for the resuscitation of severely burned adult combat casualties: in silico validation of the rule of 10
J Trauma. 2010 Jul;69 Suppl 1:S49-54