Tag Archives: surgical

Emergency percutaneous airway

An excellent thorough review of emergency needle and surgical cricothyroidotomy – collectively described as ’emergency percutaneous airway’ – reveals a number of pearls.
Regarding anatomy:

  • The cricothyroid menbrane has an average height of 10 mm and a width of 11 mm
  • Transverse incision in the lower half of the cricothyroid membrane is recommended to avoid the cricothyroid arteries and the vocal cords

Regarding oxygenation / ventilation via a cricothyroid needle:

  • High pressure source ventilation via a needle (eg. by Sanders injector or Manujet) may cause laryngospasm, so a neuromuscular blocking agent should be considered
  • Barotrauma may result from an obstructed upper airway, so efforts should be made to maintain upper airway patency where possible (eg. with a supraglottic airway)
  • A device has been manufactured that provides suction-generated expiratory ventilation assistance (using oxygen flow and the Bernoulli principle) – the Ventrain
  • The Fourth National Audit Project reported a much lower success rate and described several complications of attempted re-oxygenation via a narrow-bore cricothyroidotomy
  • Where there is no kink-resistant cannula or suitable high-pressure source ventilation device readily available, it is probably safer to perform a wide-bore cannula puncture or surgical cricothyroidotomy.

Wide-bore cannula-over trocar devices:

  • Include the Quicktrach II and Portex cricothyroidotomy kit
  • Sometimes require considerable force to push the device through the cricothyroid membrane, risking compression of the airway and damage or perforation of the posterior tracheal wall.

Seldinger cricothyroidotomy kits:

  • Separate the puncture and dilatation steps, minimising the risk of trauma
  • Include the Melker emergency cricothyroidotomy set, available in sizes 3.0–6.0 mm ID
  • Tend to be preferred by anaesthetists over the surgical and wide-bore cannula-over-trocar techniques
  • Seldinger technique in human cadavers and manikin studies by those well trained, inexperienced operators have low success rates and a long performance time

What about after?

  • High-pressure source ventilation may aid subsequent intubation by direct laryngoscopy as bubbles may be seen emerging from the glottis.
  • The Seldinger technique has been recommended to convert a narrow-bore cannula into a cuffed wide-bore cricothyroidotomy
  • While conversion of cricothyroidotomy to tracheostomy within 72 h has been advocated because of the increased risk of developing subglottic stenosis with prolonged intubation through the cricothyroid membrane, this risk may be much lower than previously believed
  • The risk of conversion, although less well examined, may also be appreciable

Which technique is best?

  • The recent NAP4 audit reported a success rate of only 37% for narrow-bore cannula-over-needle cricothyroidotomy, 57% for wide-bore cannula techniques and 100% for surgical cricothyroidotomy
  • Simulation studies show conflicting results about whether seldinger or surgical technique is faster.
  • Reported success rates of the different techniques (in simulations) also vary widely and range for surgical cricothyroidotomy from 55% to 100%, for wide-bore cannula-over-trocar from 30% to 100%, and for Seldinger technique from 60% to 100%.

The one area of some consensus is that conventional (low-pressure source) ventilation should not be used with a narrow-bore cannula; a high-pressure oxygen source and a secure pathway for the egress of gas are both mandatory to achieve adequate ventilation.
Complications may be related to technique:

  • Complications of narrow-bore cannula techniques are ventilation-related and include barotrauma, subcutaneous emphysema, pneumothorax, pneumomediastinum and circulatory arrest due to impaired venous return; Cannula obstruction due to kinking also occurs.
  • Seldinger technique may be complicated by kinking of the guidewire, which increases the risk of tube misplacement
  • Bleeding and laryngeal fracture may complicate the surgical method, and long-term complications include subglottic stenosis, scarring and voice changes.

Equipment and strategies for emergency tracheal access in the adult patient
Anaesthesia. 2011 Dec;66 Suppl 2:65-80

Complications after penetrating cardiac injury

Trauma specialists from Arizona and California describe patients with penetrating cardiac wounds, a quarter of whom survive to discharge. Survival post discharge is good, with a range of complications at follow up but no operative intervention was required for the complications.

A significant rate of postdischarge complications is associated with penetrating cardiac injuries.

DESIGN: Retrospective trauma registry review.

SETTING: Level I trauma center.

PATIENTS: All patients sustaining penetrating cardiac injuries between January 2000 and June 2010. Patient demographics, clinical data, operative findings, outpatient follow-up, echocardiogram results, and outcomes were extracted.

MAIN OUTCOME MEASURES: Cardiac-related complications and mortality.

RESULTS: During the 10.5-year study period, 406 of 40,706 trauma admissions (1.0%) sustained penetrating cardiac injury. One hundred nine (26.9%) survived to hospital discharge. The survivors were predominantly male (94.4%), with a mean (SD) age of 30.8 (11.7) years, and 74.3% sustained a stab wound. Signs of life were present on admission in 92.6%. Cardiac chambers involved were the right ventricle (45.9%), left ventricle (40.3%), right atrium (10.1%), left atrium (0.9%), and combined (2.8%). In-hospital follow-up was available for a mean (SD) of 11.0 (9.8) days (median, 8 days; range, 3-65 days) and outpatient follow-up was available in 46 patients (42.2%) for a mean (SD) of 1.9 (4.1) months (median, 0.9 months; range, 0.2-12 months). Abnormal echocardiograms demonstrated pericardial effusions (9), abnormal wall motion (8), decreased ejection fraction (<45%) (8), intramural thrombus (4), valve injury (4), cardiac enlargement (2), conduction abnormality (2), pseudoaneurysm (1), aneurysm (1), and septal defect (1). No operative intervention was required for the complications. The 1-year and 9-year survival rates were 97% and 88%, respectively.
CONCLUSIONS: Penetrating cardiac injuries remain highly lethal. A significant rate of cardiac complications can be expected and follow-up echocardiographic evaluation is warranted prior to discharge. The majority of these, however, can be managed without the need for surgical intervention.

Postdischarge Complications After Penetrating Cardiac Injury: a survivable injury with a high postdischarge complication rate
Arch Surg. 2011 Sep;146(9):1061-6

Pre-hospital thoracotomy

The London Helicopter Emergency Medical Service provides a physician / paramedic team to victims of trauma. One of the interventions performed by their physicians is pre-hospital resuscitative thoracotomy to patients with cardiac arrest due to penetrating thoracic trauma. They have published the outcomes from this procedure over a 15 year period which show an 18% survival to discharge rate, with a high rate of neurologically intact survivors1.
The article was submitted for publication on February 1, 2010, and in the discussion mentions a further two survivors from the procedure performed after conducting the study. It is likely therefore in the year and a half since submission still more patients have been saved. It will be interesting to read future reports from this team as the numbers accumulate; penetrating trauma missions are sadly increasing in frequency.
Having worked for these guys and performed this procedure in the field a few times myself, I can attest to the training and governance surrounding this system. The technique of clamshell thoracotomy is well described 2 and one I would recommend for the non-surgeon.

BACKGROUND: Prehospital cardiac arrest associated with trauma almost always results in death. A case of survival after prehospital thoracotomy was published in 1994 and several others have followed. This article describes the result of prehospital thoracotomy in a physician-led system for patients with stab wounds to the chest who suffered cardiac arrest on scene.
METHODS: A 15-year retrospective prehospital trauma database review identified victims of stab wounds to the chest who suffered cardiac arrest on scene and had thoracotomy performed according to local standard operating procedures.
RESULTS: Overall, 71 patients met inclusion criteria. Thirteen patients (18%) survived to hospital discharge. Neurologic outcome was good in 11 patients and poor in 2. Presenting cardiac rhythm was asystole in four patients, pulseless electrical activity in five, and unrecorded in the remaining four. All survivors had cardiac tamponade. The medical team was present at the time of cardiac arrest for six survivors (good neurologic outcome): arrived in the first 5 minutes after arrest in three patients (all good neurologic outcome), arrived 5 minutes to 10 minutes after arrest in two patients (one poor neurologic outcome), and in one patient (poor neurologic outcome) the period was unknown. Of the survivors, seven thoracotomies were performed by emergency physicians and six by anesthesiologists.
CONCLUSIONS: Prehospital thoracotomy is a well-established procedure in this physician-led prehospital service. Results from this and other similar systems suggest that when performed for the subgroup of patients described, significant numbers of survivors with good neurologic outcome can be expected.

1. Thirteen Survivors of Prehospital Thoracotomy for Penetrating Trauma: A Prehospital Physician-Performed Resuscitation Procedure That Can Yield Good Results
J Trauma. 2011 May;70(5):E75-8
2. Emergency thoracotomy: “how to do it”
Emerg Med J. 2005 January; 22(1):22–24
Full text available here

Surgeons and trauma teams

There can be issues associated with calling surgeons to trauma team activations in the ED, including interruption to the surgeon’s other duties, and the absence of anything useful for the surgeon to do, when most blunt trauma patients are managed by emergency physicians, intensivists, and orthopaedic surgeons, with a growing input from interventional radiologists. At one American major trauma centre for example, emergency operation by a trauma surgeon for blunt trauma averages once every 7 weeks for adults and less than once every 3 years for children1.
While there are many surgeons who are passionate about trauma care and excellent in the non-operative aspects of trauma management, there are probably more who would welcome measures to reduce the need to attend ED for all trauma team activations. Of course no triage tool is perfect: they will always have to trade sensitivity against specificity. One such tool from the Loma Linda University Medical Center uses the simple criteria of penetrating trauma, systolic blood pressure, and heart rate. These pertain to pre-hospital measurement and therefore the surgeon can be activated prior to patient arrival.
This triage tool performed better than the American College of Surgeons’ “major resuscitation” trauma triage criteria2:

STUDY OBJECTIVE: Trauma centers use “secondary triage” to determine the necessity of trauma surgeon involvement. A clinical decision rule, which includes penetrating injury, an initial systolic blood pressure less than 100 mm Hg, or an initial pulse rate greater than 100 beats/min, was developed to predict which trauma patients require emergency operative intervention or emergency procedural intervention (cricothyroidotomy or thoracotomy) in the emergency department. Our goal was to validate this rule in an adult trauma population and to compare it with the American College of Surgeons’ major resuscitation criteria.

METHODS: We used Level I trauma center registry data from September 1, 1995, through November 30, 2008. Outcomes were confirmed with blinded abstractors. Sensitivity, specificity, and 95% confidence intervals (CIs) were calculated.

RESULTS: Our patient sample included 20,872 individuals. The median Injury Severity Score was 9 (interquartile range 4 to 16), 15.3% of patients had penetrating injuries, 13.5% had a systolic blood pressure less than 100 mm Hg, and 32.5% had a pulse rate greater than 100 beats/min. Emergency operative intervention or procedural intervention was required in 1,099 patients (5.3%; 95% CI 5.0% to 5.6%). The sensitivities and specificities of the rule and the major resuscitation criteria for predicting emergency operative intervention or emergency procedural intervention were 95.6% (95% CI 94.3% to 96.8%) and 56.1% (95% CI 55.4% to 56.8%) and 85.5% (95% CI 83.3% to 87.5%) and 80.9% (95% CI 80.3% to 81.4%), respectively.

CONCLUSION: This new rule was more sensitive for predicting the need for emergency operative intervention or emergency procedural intervention directly compared with the American College of Surgeons’ major resuscitation criteria, which may improve the effectiveness and efficiency of trauma triage.

Although not mentioned in the abstract, the study also included assessment of refinements of the Loma Linda Rule based on different cutoffs of heart rate and blood pressure. Once such refinement that included penetrating injury to the torso and less conservative physiological criteria (systolic blood pressure <90 mm Hg and pulse rate >110 beats/min) resulted in a slightly lower sensitivity, with a dramatic improvement in specificity compared with the original Loma Linda Rule.
A good point is made by Steve Green in his accompanying editoral3:

A possibility is that emergency physicians supervising out-of-hospital radio calls can predict the need for surgeon presence just as accurately (or perhaps more accurately) as any of these rules. After all, judgment is the time-tested mechanism by which emergency physicians summon all other consultants for all other conditions.

Unfortunately for many UK and Australasian centres, the challenge that remains is not deciding when to call the surgeon, but getting one when you do call, preferable one who is not committed to an elective operating list and one who has some training and experience in trauma surgery.
1. Clinical decision rules for secondary trauma triage: predictors of emergency operative management.
Ann Emerg Med. 2006 Feb;47(2):135
2. Validation and refinement of a rule to predict emergency intervention in adult trauma patients
Ann Emerg Med. 2011 Aug;58(2):164-71
3. Trauma is occasionally a surgical disease: how can we best predict when?
Ann Emerg Med. 2011 Aug;58(2):172-177

It's up to you….

Sometimes you have nothing to lose by doing a procedure that you may never have done before, if the patient is going to die or deteriorate without it.
In today’s competency-based-training-and-accreditation climate (a good thing), how does one achieve competence in a procedure that may be too rare to have even been seen, let alone practiced under supervision and formally assessed?
I spend a lot of time and energy trying to convince colleagues and trainees that there are situations where the benefit-harm equation is in favour of acting, despite reservations they may have about inadequate experience or training. These situations often require ‘surgical’ procedures. What they have in common is that they are all relatively simple to perform, but may save a life, a limb, or sight which otherwise may almost certainly be lost.
How best to train for these procedures, some of which may be too rare even for ‘see one, do one, teach one’ in an entire residency program? Simulators? Animal labs? Cadavers?

Slide from 'Making Things Happen' Course

In my view, the answer is to use the most high fidelity simulator in the universe – the human brain. It is those professionals who mentally rehearse the scenario and visualise the procedure over and over who are most likely to act when the patient needs it most. Several colleagues of mine over the years can recount incidents in which the indications for a thoracotomy or hysterotomy were present but they failed to act, talking themselves out of doing the procedure with a range of excuses from ‘I hadn’t had enough training’ to ‘No-one in the room wanted to do it’. Don’t be one of those! Get simulating now – you have all the equipment you need!

Ten steps to making it happen – be prepared
1. Pick a procedure (eg. thoracotomy)
2. Be ABSOLUTELY CLEAR on the indications – this helps remove any doubt when the time comes
3. Learn how to do it (talk to colleagues, read a book)
4. Know where the required equipment is kept
5. Start practicing in your mind – visualise seeing the patient, what you will say to your staff, where you will locate your equipment, what you will do procedurally step-by-step
6. Visualise possible outcomes and what your next steps would be (tamponade plus cardiac wound in a beating heart, tamponade plus wound plus VF, return of spontaneous circulation with bleeding from internal mammary arteries)
7. Read more and talk to more colleagues based on questions arising from your ‘simulations’
8. Travel, go on a course, get access to animal or cadaver labs if that’s an option in your setting
9. Speak to people who have done it in YOUR context (eg. for a resus room thoracotomy, talk to emergency physicians who have done it there, rather than a cardiothoracic surgeon who has only ever done them in the operating room)
10. Find an excuse on shift to talk about it to colleagues and rehearse the steps, locate the equipment, and so on. Remember: REPETITION IS THE MOTHER OF SKILL!

What’s on your list of life/limb/sight-saving procedures that can’t wait for someone else to do? Did I miss any? Should skull trephination be there? Comments welcome!

Prehospital resuscitative hysterotomy

My colleagues and I describe a tragic case in this month’s European Journal of Emergency Medicine1. Our physican-paramedic team was called to the home of a collapsed 38-week pregnant female who was in asystolic cardiac arrest. A peri-mortem caesarean delivery was performed by the physician in the patient’s home and the delivered newborn required intubation and chest compressions for bradycardia before resuming good colour and heart rate. Sadly there was ultimately a fatal outcome for both patients, but this case reminds us of the indications for this intervention and for emergency and pre-hospital physicians to be prepared to do it. A literature search yielded only one other reported prehospital case in recent medical literature2.

1.Prehospital resuscitative hysterotomy
Eur J Emerg Med. 2011 Aug;18(4):241-2
2.Out-of-hospital perimortem cesarean section
Prehosp Emerg Care. 1998 Jul-Sep;2(3):206-8

FAST in kids has low sensitivity

The abstract says it all – don’t use FAST to rule out significant abdominal free fluid in kids with blunt abdominal trauma. Fine as a rule-in test (for free fluid) though.

Objectives:  Focused assessment of sonography in trauma (FAST) has been shown useful to detect clinically significant hemoperitoneum in adults, but not in children. The objectives were to determine test characteristics for clinically important intraperitoneal free fluid (FF) in pediatric blunt abdominal trauma (BAT) using computed tomography (CT) or surgery as criterion reference and, second, to determine the test characteristics of FAST to detect any amount of intraperitoneal FF as detected by CT.

Methods:  This was a prospective observational study of consecutive children (0–17 years) who required trauma team activation for BAT and received either CT or laparotomy between 2004 and 2007. Experienced physicians performed and interpreted FAST. Clinically important FF was defined as moderate or greater amount of intraperitoneal FF per the radiologist CT report or surgery.

Results:  The study enrolled 431 patients, excluded 74, and analyzed data on 357. For the first objective, 23 patients had significant hemoperitoneum (22 on CT and one at surgery). Twelve of the 23 had true-positive FAST (sensitivity = 52%; 95% confidence interval [CI] = 31% to 73%). FAST was true negative in 321 of 334 (specificity = 96%; 95% CI = 93% to 98%). Twelve of 25 patients with positive FAST had significant FF on CT (positive predictive value [PPV] = 48%; 95% CI = 28% to 69%). Of 332 patients with negative FAST, 321 had no significant fluid on CT (negative predictive value [NPV] = 97%; 95% CI = 94% to 98%). Positive likelihood ratio (LR) for FF was 13.4 (95% CI = 6.9 to 26.0) while the negative LR was 0.50 (95% CI = 0.32 to 0.76). Accuracy was 93% (333 of 357, 95% CI = 90% to 96%). For the second objective, test characteristics were as follows: sensitivity = 20% (95% CI = 13% to 30%), specificity = 98% (95% CI = 95% to 99%), PPV = 76% (95% CI = 54% to 90%), NPV = 78% (95% CI = 73% to 82%), positive LR = 9.0 (95% CI = 3.7 to 21.8), negative LR = 0.81 (95% CI = 0.7 to 0.9), and accuracy = 78% (277 of 357, 95% CI = 73% to 82%).

Conclusion:  In this population of children with BAT, FAST has a low sensitivity for clinically important FF but has high specificity. A positive FAST suggests hemoperitoneum and abdominal injury, while a negative FAST aids little in decision-making

Test characteristics of focused assessment of sonography for trauma for clinically significant abdominal free fluid in pediatric blunt abdominal trauma
Acad Emerg Med. 2011 May;18(5):477-82

Decompressive craniectomy for high ICP head trauma

Bilateral decompressive craniectomy for severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first line therapies did not improve neurological outcome. This was the Australasian DECRA study.

Emergency Medicine Ireland reviews the paper here.
Another study on decompressive craniectomy, the RESCUE-ICP study, is ongoing, with 306/400 patients now recruited. The RESCUE-ICP investigators make the following comment on the DECRA trial:
“The study showed a significant decrease in intracranial pressure in patients in the surgical group. However, although ICP was lowered by surgery, ICP was not excessively high in the medical group (mean ICP below 24 mmHg pre-randomisation).
RESCUE-ICP differs from DECRA in terms of ICP threshold (25 vs 20 mmHg), timing of surgery (any time after injury vs within 72 hours post-injury), acceptance of contusions and longer follow up (2 years).
The cohort profiles and criteria for entry and randomisation between the DECRA and RESCUE-ICP are therefore very different. Hence the results from the DECRA study should not deter recruitment into RESCUE-ICP. Randomising patients into the RESCUE-ICP study is now even more important!”

It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure.
From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months.
Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%).
In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes

Decompressive Craniectomy in Diffuse Traumatic Brain Injury
N Engl J Med. 2011 Apr 21;364(16):1493-502

Military vascular injury to the torso is deadly

Outcomes are described for military personnel with vascular injury sustained in Afghanistan and Iraq.

BACKGROUND: Military injuries to named blood vessels are complex limb- and life-threatening wounds that pose significant difficulties in prehospital and surgical management. The aim of this study was to provide a comprehensive description of the epidemiology, treatment and outcome of vascular injury among service personnel deployed on operations in Afghanistan and Iraq.
METHODS: Data from the British Joint Theatre Trauma Registry were combined with hospital records to review all cases of vascular trauma in deployed service personnel over a 5-year interval ending in January 2008.
RESULTS: Of 1203 injured service personnel, 110 sustained injuries to named vessels; 66 of them died before any surgical intervention. All 25 patients who sustained an injury to a named vessel in the abdomen or thorax died; 24 did not survive to undergo surgery and one casualty in extremis underwent a thoracotomy, but died. Six of 17 patients with cervical vascular injuries survived to surgical intervention; two died after surgery. Of 76 patients with extremity vascular injuries, 37 survived to surgery with one postoperative death. Interventions on 38 limbs included 19 damage control procedures (15 primary amputations, 4 vessel ligations) and 19 definitive limb revascularization procedures (11 interposition vein grafts, 8 direct repairs), four of which failed necessitating three amputations.
CONCLUSION: In operable patients with extremity injury, amputation or ligation is often required for damage control and preservation of life. Favourable limb salvage rates are achievable in casualties able to withstand revascularization. Despite marked progress in contemporary battlefield trauma care, torso vascular injury is usually not amenable to surgical intervention.

Outcome after vascular trauma in a deployed military trauma system
Br J Surg. 2011 Feb;98(2):228-34

Algorithm for Body Packers

‘Mules’ or body packers are people who transport illegal drugs by packet ingestion into the gastrointestinal tract. A large study of body packers apprehended by United State Customs officials at JFK International Airport, New York describes experience with body packers and an algorithm for conservative and surgical management.

Of 56 patients requiring admission out of a total of 1250 subjects confirmed to be body packers, 25 patients (45%) required surgical intervention, whereas 31 patients (55%) were successfully managed conservatively.

  • Plain abdominal x-ray was diagnostic in 49 patients (88% of all hospitalised patients).
  • Non-contrast CT of the abdomen and pelvis is required if AXR is negative
  • Forty-eight per cent of body packers had positive urine toxicology for illicit substances.


  • Indications for intervention included:
  • bowel obstruction
  • packet rupture/toxicity
  • delayed progression of packet transit on conservative management.
  • Patients with packets found predominantly in the proximal gastrointestinal tract failed conservative management more frequently than those with packets found in the distal gastrointestinal tract.

Multiple intraoperative manoeuvres were used to remove the foreign bodies:

  • gastrotomy
  • enterotomy
  • colotomy.

Wound infection was the most common complication and is associated with distal enterotomy and colotomy.
The authors recommend a confirmatory radiological study to demonstrate complete clearance of packets
Establishment of a definitive protocol for the diagnosis and management of body packers (drug mules).
Emerg Med J 2011;28:98-10